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ABSTRACT  ARTICLE INFO 

This research discusses the development of an automated system for 
detecting ripe oil palm fruits (fresh fruit bunch, FFB) using computer 
vision and artificial intelligence (AI) technology. The main objective of 
this study is to improve efficiency and productivity in the oil palm 
harvesting process by adopting the latest technology. Several related 
studies have developed non-destructive methods for classifying the 
ripeness of FFB. This research utilizes the YOLOv4 deep learning model 
to detect ripe FFB in real-time. Visual data of FFB is obtained by 
capturing images using an Intel Realsense D435 camera on oil palm 
trees. The data is then labeled and divided into training and validation 
sets. Through evaluation, the YOLOv4 model with a network input size 
of 512 × 512 was found to be the best model for TBS detection task. The 
training process was conducted for 2000 iterations, achieving a mean 
average precision (mAP) of 87.9% in the final iteration. This model 
successfully detects ripe FFB with high accuracy. The results of this 
research indicate that the use of computer vision and artificial 
intelligence technology can help optimize the oil palm harvesting 
process. With this automated system, the palm oil industry can address 
labor shortages and improve production efficiency. This study provides 
an important contribution to the development of the oil palm industry 
with potential applications in broader fields. 
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1. INTRODUCTION 

Ripe oil palm fruit is key to producing quality palm oil. The ripeness of oil palm fruit bunches 

(FFB) can generally be identified by the number of fruits detached from the bunch [1]. On oil palm 

plantations, FFB can only be harvested when the trees are mature, at three years old. Field workers 

harvest the FFB 10-14 days after harvest. Ripe FFB are typically identified by their bright red and 

yellow color, as opposed to the brown and black color of unripe FFB. The harvested FFB are collected 

and transported to the palm oil mill for oil extraction [2]. In practice, ideally, FFB should be delivered 

to the mill within 24 hours of harvest to maintain optimal fruit quality. However, this is not always 

guaranteed due to factors such as adverse weather during harvest, unforeseen logistical issues, and other 

factors. Furthermore, labor shortages have a significant impact on the economic growth of the 

traditional, labor-intensive palm oil industry [3]. 

In 2020, the palm oil industry contributed 15% to the country's foreign exchange earnings. 

Through palm oil exports, the industry contributed approximately USD 15 billion to the country's 

foreign exchange earnings that year. Meanwhile, in terms of imports, the palm oil industry also 
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contributed approximately IDR 38 trillion in the same year [4]. Exported palm oil production continues 

to increase annually. However, the main obstacle faced is that the majority of palm fruit sorting 

processes are still carried out manually, due to the limited availability of reliable systems for classifying 

palm fruit [5]. Oil palm plantations have reported labor shortages of around 20-30%, resulting in 

potential yield losses of around 15-45% due to post-harvest issues [6]. To address these challenges, the 

horticultural industry needs to adopt the latest technology in the FFB harvesting process. Utilizing the 

latest technology, such as harvesting machines and automation systems, can help increase efficiency 

and productivity in the harvesting process. This way, the industry can mitigate the negative impacts of 

labor shortages and optimize harvest yields. 

Several studies have been conducted on FFB maturity classification using non-destructive 

methods. A study used a computer vision algorithm implemented in a low-cost, portable processor to 

train a Convolutional Neural Network (CNN). Palm fruit ripeness detection was obtained from images 

of 100 palm fruits at varying levels of ripeness, which were then analyzed in Hue, Saturation, and Value 

(HSV) space [7]. Another study used multispectral imaging with a monochrome camera to determine 

the correlation between ripeness and fruit firmness [8]. Palm fruit was classified through image 

binarization, morphological processing, and color feature extraction. The average color intensity was 

calculated based on a previously developed RGB model [9]. 

This study used a deep learning model called YOLO (You Only Look Once) to detect ripe FFB 

[10]. The advantage of the YOLO model is its ability to detect ripe fruit bunches (FFB) with high 

accuracy and in real time thanks to its fast processing techniques. Previously, the YOLO model has 

been implemented to detect agricultural fruits such as apples [11], tomatoes [12], and pears [13]. In the 

palm oil sector, Junos et al. [14] developed an automated detection system incorporating the YOLO 

model for FFB detection. 

In this project, the goal was to develop an automated system that can detect ripe and 

unharvested FFB in real-time using a combination of computer vision and artificial intelligence (AI). 

This system was designed for use in field applications as part of a robotic harvesting mechanism. In this 

system, images of oil palm trees were captured using an RGB camera (Intel Realsense D435) and sent 

to a tablet computer (Nvidia Jetson NX) equipped with an inference model based on YOLOv4. This 

model was trained to identify ripe FFB, record their coordinates, and send the location information to 

the robot's picking mechanism in the robot operating system (ROS). YOLOv4 was chosen because it is 

well integrated with ROS, which is a core component of the developed robotic harvesting system. 

Although not the latest version, YOLOv4 is still capable of detecting objects with high accuracy and 

speed [15]. 

2. THEORITICAL REVIEW 

Computer vision plays a crucial role in image-based applications, evolving from a sensing 

modality to intelligent computing systems. Computer vision develops methods that mimic human 

visual ability (eyes) to infer real-world characteristics in three dimensions using light reflections 

received by sensors from objects. Based on the level of abstraction of the output information, three 

task categories can be distinguished: low-level, mid-level, and high-level computer vision. 

Low-level computer vision focuses on image or video processing in various applications such 

as image matching, automatic identification, optical flow computing, and motion analysis. Mid-level 

computer vision can infer object geometry and capture and track visual motion. Meanwhile, high-level 

computer vision provides more complex information such as object recognition and relationship 

interpretation, enabling better recognition and understanding of objects within images [16]. 

The use of computer vision in image- and camera-based imaging has significant potential for 

handling identification, classification, and detection processes in various fields. In agriculture, this 

method has been widely applied in ripeness classification systems, disease detection, advanced 

harvesting, and crop care. Several studies related to computer vision applications in agriculture include 

leaf disease detection in apple orchards for intelligent spraying [17], automated tractor driving using 

computer vision [18], real-time peach detection, specifically in oil palm plantations, research related to 

fresh fruit bunch (FFB) analysis, oil palm ripeness classification, and crude palm oil (CPO) prediction 

[16, 19]. Research focused on the efficiency of optical imaging for oil palm FFB ripeness 

classification is a key focus in efforts to increase CPO productivity in palm oil mills. 
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YOLO (you only look once) is a development of an artificial neural network (ANN) 

computing system used for real-time object detection. This method localizes images at various areas 

and scales and makes detections based on the highest image value. By dividing the image into several 

regions, the ANN can predict bounding boxes and possible objects within each region. This approach 

is more efficient than classifier-based systems. The main advantage of YOLO is its speed in detecting 

objects without requiring extensive initial data, as is required by the region-convolutional neural 

network (R-CNN) method [17]. 

The YOLO algorithm has been widely applied in various studies due to its superior ability to 

detect objects with high accuracy and in real time. Some relevant studies include tomato detection 

using a modified version of YOLOv3, real-time pear detection and counting, and the development of a 

YOLO-based object detection model optimized for oil palm harvesting systems. Research related to 

oil palm plantations has promising prospects, especially in Indonesia, one of the world's largest palm 

oil producers. Real-time operations are invaluable in improving the efficiency of automated harvesting 

mechanisms in the field [11-15]. 

3. RESEARCH METHODS 

To develop an artificial intelligence (AI)-based vision system for detecting FFB in oil palm 

trees, the algorithm must be trained using visual data or samples of ripe FFB from the trees. This 

section provides a detailed explanation of the work done for data acquisition, preparation, and training. 

3.1. Data Acquisition 

Visual data of FFB from oil palm trees was captured using an Intel RealSense D435 camera. 

The camera was mounted on a height-adjustable platform to capture images at the same height as the 

FFB on the tree. The captured images had a resolution of 1920 × 1080 pixels and were stored on a 

laptop computer connected via a USB-C cable. During data collection, an expert in the field assisted in 

identifying ripe and unripe FFB on the trees. 

3.2. Data Preparation and Training 

Video captured of oil palm trees was first extracted into images. These images can be 

categorized as positive and negative. Positive images are images of trees containing the desired object 

to be detected, namely ripe FFB. Conversely, negative images are images of trees without ripe FFB. 

There were a total of 240 positive images and 250 negative images. Ten images were then 

systematically selected for each tree from the large number of extracted images. The reason for 

selecting only 10 images was to avoid redundancy in the training images. These images show objects 

in various angles, backgrounds, positions, and lighting. This variation is crucial in the training process 

of deep learning algorithms, as they require this information to learn and detect patterns in 

images.Next, the positive images underwent a manual labeling process using labelImg software. The 

positive and negative images were further separated into two datasets: a training set and a validation 

set. The positive images were divided into 210 and 30 images for the training and validation sets, 

respectively. Meanwhile, the negative images were divided into 220 and 30 images for the training 

and validation sets, respectively. The images extracted from each tree were unique, meaning images 

from the same tree would not be included in the same training and validation sets. 

Table 1. Image separation for training the YOLOv4 model. 

Dataset Trainingset Validationset Number of images 

Positif 210 30 240 

Negatif 220 30 250 

Total 430 60 490 

Several variations of the YOLOv4 model were evaluated to compare their performance on the 

TBS detection task. The evaluated model variations included YOLOv4-512, YOLOv4-608, YOLOv4-

CSP-512, YOLOv4-CSP-608, YOLOv4-tiny-512, and YOLOv4-tiny-608. The evaluation was 

conducted by comparing the learning curves of each model, including the average loss and mean 
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average precision. The evaluation results show that the YOLOv4 and YOLOv4-CSP models with an 

input network size of 512 × 512 have higher mAP than those with an input network size of 608 × 608. 

Furthermore, YOLOv4-CSP experiences a slower average loss rate compared to other YOLOv4 

models. However, the YOLOv4-tiny model has a shorter training time but lower mAP compared to the 

YOLOv4 and YOLOv4-CSP models. Therefore, the YOLOv4 model with an input network size of 

512 × 512 was selected as the best model for the TBS detection task in this study. 

           

           

Figure 1. (a) YOLOv4-512, (b) YOLOv4-608, (c) YOLOv4-CSP-512, and (d) YOLOv4-CSP-608, (e) YOLOv4-

tiny-512, and (f) YOLOv4-tiny-608. 

4. RESULTS AND DISCUSSIONS 

4.1. YOLOv4 Model Training Performance 

The training process was conducted on a computer with an Intel Core i7-10700K CPU, 

NVIDIA GeForce RTX 3080 GPU, and 32 GB of RAM. The model was trained for 2,000 iterations 

with a batch size of 64 and a learning rate of 0.001. During training, evaluations were conducted every 

100 iterations to monitor model performance. The evaluation results showed that the YOLOv4 model 

achieved a mAP of 87.9% at the 2,000th iteration. Furthermore, the model also had a recall of 82% 

and an F1-score of 88%. These results indicate that the YOLOv4 model is capable of detecting mature 

FFB with high accuracy. 

Table 2. YOLOv4 model analysis for 1000 iterations. 

Iterations 1000 2000 3000 

Precision 86% 100% 100% 

Recall 80% 97% 100% 

FI-score 83% 98% 100% 

Average IOU 64.24% 77.93% 79.75% 

mAP 87.88% 99.89% 100% 
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4.2. Comparison with Different YOLOv4 Models 

Comparison of the performance of several YOLOv4 model variations with different input 

network sizes. The evaluation results show that the YOLOv4 model with an input network size of 512 

× 512 has a higher mAP than the one with an input network size of 608 × 608. In addition, the 

YOLOv4-CSP model experiences a slower average loss decrease compared to the other YOLOv4 

models. However, the YOLOv4-tiny model has a shorter training time but lower mAP compared to the 

YOLOv4 and YOLOv4-CSP models. Therefore, the YOLOv4 model with an input network size of 

512 × 512 was selected as the best model for the TBS detection task in this study. 

Table 3. Weight size in different models. 

Model Weight size (MB) 

YOLOv4-512 256.0 

YOLOv4-608 256.0 

YOLOv4-CSP-512 210.2 

YOLOv4-CSP-608 210.2 

YOLOv4-tiny-512 23.5 

YOLOv4-tiny-608 23.5 

Table 4. Analysis of different YOLOv4 models. 

Model name Precision Recall F1-score Average IoU mAP 

YOLOv4-512 97% 97% 97% 75.85% 96.00% 

YOLOv4-608 97% 97% 97% 77.13% 96.22% 

YOLOv4-CSP-512 90% 87% 88% 67.48% 95.89% 

YOLOv4-CSP-608 84% 90% 87% 63.24% 96.43% 

YOLOv4-tiny-512 57% 57% 57% 38.74% 55.60% 

YOLOv4-tiny-608 48% 77% 59% 33.76% 48.89% 

Table 5. Evaluation of the YOLOv4 model in on-site testing dataset. 

Evaluation Percentage 

Precision 95% 

Recall 82% 

F1-score 88% 

Average IoU 70.19% 

mAP 87.9% 

4.3. Real-Time on-Site Testing of the YOLOv4 Mode 

The YOLOv4 model was tested in real time at various locations to evaluate its performance 

under different environmental conditions. Testing was conducted under seven different environmental 

conditions: bright sunlight, shaded lighting, near view, far view, leaf obstruction, motion blur, and 

unripe FFB. 

The evaluation results showed that the YOLOv4 model was able to detect ripe FFB with high 

accuracy under all tested environmental conditions. In bright sunlight, the YOLOv4 model achieved a 

detection accuracy of 96.7%, while in far-field conditions, it achieved a detection accuracy of 93.3%. 

Although the YOLOv4 model's detection accuracy decreased slightly under conditions of leaf 

obstruction and motion blur, it still achieved quite high detection accuracies of 86.7% and 83.3%, 

respectively. 

These evaluation results demonstrate that the YOLOv4 model can be used effectively in a 

real-time ripe FFB detection system in the field, even under varying environmental conditions. This 

demonstrates the YOLOv4 model's broad application potential in the oil palm plantation industry. 

5. CONCLUSION 

The conclusion of this review article is that the use of the YOLOv4 model in real-time 

detection of ripe FFB in the field shows effective results, even under varying environmental 



 

J. Integr. Artif. Intell. Sci. Eng., 1(2), 29-34, July 2025 

34 

conditions. This article also illustrates the potential for broad applications of the YOLOv4 model in 

the oil palm plantation industry. Although this article has several shortcomings, such as the lack of 

detailed information about the dataset used in training the YOLOv4 model, the absence of 

comparisons with other ripe FFB detection methods, and the absence of discussion on the large-scale 

application of the YOLOv4 model in the oil palm plantation industry, it still provides useful 

information about the use of the YOLOv4 model in real-time detection of ripe FFB in the field and its 

potential applications in the oil palm plantation industry. 
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