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ABSTRACT  ARTICLE INFO 

Over the past few decades optical sensor has experienced significant 
development. The utilization of fiber Bragg grating for the detection of 
various parameter such as stress, strain, displacement, temperature, 
refractive index, humidity, pressure and vibration by measuring the 
changes in wavelength, polarization, intensity of light passing through 
the sensing region and phase. This review discusses the development of 
optical sensors using the Mach-Zehnder interferometer which is being 
frequently used for sensing applications due to their geometric and 
flexible construction. This review would be useful for the researchers to 
develop miniaturize fiber devices and instrument with enhanced sensing 
performance. 
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1. INTRODUCTION 

Fiber optic sensors have been the center of research for decades. Various types of fiber optic 

sensors have been developed, such as magnetic field sensors, salinity sensors) [1-3], molecular sensors, 

tilt sensors, pressure sensors and ultrasonic sensors [4]. Fiber optic sensors have several advantages 

over conventional sensors such as high sensitivity, can measure at long distances, multiplexing, able to 

measure strain, can detect temperature shifts along the length of the fiber [5]. To measure the stress 

distributed along the length of the optical fiber, several techniques have been used such as fiber Bragg 

grating (FBG) sensors and interferometer-based sensors (Fabry-Perot and Mach-Zehnder) [6]. 

Fiber optic sensors based on interferometer structures have undergone significant development 

because they have an important role in monitoring several parameters such as physical, chemical and 

biological parameters [7]. The Mach-Zehnder sensor works based on the intensity of the phase 

difference variation illuminated by two separate rays from the same light source [8]. Different 

configurations of Mach-Zehnder interferometer (MZI) combined with FBG have been developed as a 

measuring medium for changes in refractive index and temperature, including the shape of the core 

structure that shifts in the MZI [9, 10]. However, sensors with very high sensitivity measurements still 

present their own challenges. This paper provides and summarizes the development of interferometer-

based fiber optic sensor sensitivity. 

https://creativecommons.org/licenses/by/4.0/


 

J. Opto-Electro-Medic Sci., 1(2), 33-46, June 2025 

34 

2. LITERATURE REVIEW 

2.1. FBG Sensor Principle in Temperature and Strain Measurement 

2.1.1. FBG Thermal Characterization 

FBG is a cyclic modulation of the refractive index formed by exposure to UV radiation along 

the fiber core at a finite length of optical fiber [11, 12]. When light with a wide band propagates 

through an optical fiber, the grating acts as a narrowband filter to reflect the peak wavelength known 

as the Bragg wavelength [13-15]. The Bragg wavelength can be understood as: 

        (1) 

where, λB is the Bragg wavelength reflected by the FBG, n is the effective refractive index and Λ is the 

lattice period [12]. 

Temperature sensors are the most common parameters used in most applications. 

Conventional temperature sensors such as thermocouples, large resistance temperature detectors and 

thermostats have a low operating range and are not resistant to electromagnetic waves [16, 17]. FBG 

sensors are a good solution because they have low thermal conductivity, are small in size and are very 

sensitive to electromagnetic waves [18, 19]. The use of thermal effects is the main cause of 

temperature sensitivity in FBGs [20]. In FBG sensors, the shift in the Bragg wavelength is caused by 

changes in temperature T. By deriving Equation (1) [15], the relationship between changes in 

wavelength and changes in temperature can be seen with:  
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where, Δλ/λ is the normalized resonance shift due to temperature changes, ᶓ is the thermo optical 

coefficient, and α is the thermal expansion coefficient. At a wavelength of 1330 nm, the values of ᶓ 

and α in silica are 6.6 × 10
-6

 /°C and 0.55 x 10-6 /°C, so the temperature sensitivity value obtained is 

0.0094 nm/°C. The reflectance value of germanium doped by silica in FBG becomes low at high 

temperatures [21, 22]. Measurement of very high temperature values is very difficult to obtain so that 

research in developing sensitivity levels through FBG is very necessary in various applications [23]. 

In some main structures, the wavelength shift value of the bound structure with the unbound 

one caused by the induction of different temperature changes [24]. The unbound wavelength shift can 

be found by substituting the temperature change T into the equation: 
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where, n0 is the refractive index, p11 and p12 are Pockel constants, αf is the thermal expansion 

coefficient [25]. Measurement of the shift in the bound Bragg wavelength caused by temperature 

changes can be associated with the thermal strain T due to the mismatch of the thermal expansion 

value between the optical fiber and the main structure. The thermal strain value can be found through 

the equation [13]:  
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2.1.2. FBG Strain Mechanics Characterization 

The use of FBG sensors for strain changes that occur depends on the shape of the structure and 

the nature of the material being passed [26, 27]. The mechanical stress transmitted to the FBG sensor 

from the material used can be seen in the equation:  
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where, ε0 is the mechanical strain. The shift of the Bragg wavelength in the FBG bound to the structure 

can be determined by substituting Equation (6) into the equation below:  

 
   

  
          (8) 

where, ε is the mechanical strain, the resulting Bragg wavelength shift equation becomes:  

            (9) 

2.1.3. Characterization of Temperature Changes and Strain Mechanics 

The use of the superposition principle creates a shift in the FBG Bragg wavelength relative to 

the main structure that has variations in temperature and mechanical strain, so that it can be explained 

by adding Equations (8) and (9) into [28]:  

 
   

  
 [         ]          (10) 

 

Figure 1. Interferometer form. 

2.2. Sensor Form and Development Using MZI 

2.2.1. Interferometer 

The use of fiber optic sensor-based interferometers has experienced significant development in 

various applications. The use of this interferometer sensor depends on the high-order mode and the 
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fundamental mode that produces changes in the resonance wavelength. The spectrum of the phase 

transition that depends on the difference in the optical path length in the interference mode can be 

written as follows:  

   
  

 
(     )  (11) 

where, L is the length of the sensor, λ is the wavelength and the refractive index difference between 

the higher order and cladding modes. 

The sensor arm and the reference arm are the two main components in the interferometer 

sensor. The light passing through the FBG is divided into two different paths, where the light 

propagates through the sensor arm that can be disturbed, and the other light propagates through the 

reference arm that is isolated from the sensor medium. The dependence between the phase and the out-

of-phase conditions between the two arms, produces destructive and constructive interference. This 

can show the phase difference due to the influence of the surrounding environment. Mach-Zehnder 

[29, 30], Michelson [31, 32], Fabry-Perot [33], Sagnac [30, 34] and interferometers are usually used 

based on the modulated phase conditions as shown in Figure 1. 

2.2.2. MZI 

FBS sensors based on MZI are currently widely developed in various sensor applications 

because they have flexible configurations. This sensor works to measure the phase shift between two 

rays. The length of the sensor and reference arms are the same but have a difference in optical path 

length which produces interference [35, 36]. This application is used by wearing the sensor arm in the 

surrounding environment while the reference arm remains isolated. Changes in one of the surrounding 

parameters induce a phase difference and this phase shift produces constructive and destructive 

interference patterns. Generally, MZI is based on multimode interference which can be shown in 

Figure 2. 

 

Figure 2. MZI [20]. 

The output intensity of the interference pattern can be written as:  

          √         (12) 

where, I1 and I2 are the intensities of the propagating light and the phase difference can be calculated 

by Φ = 2π/λ(Δneff)L which is the same as the formula for Equation (11) [37-40]. 

3. RESEARCH METHODOLOGY 

3.1. Structure and Principle of FBG sensor on MZI 

3.1.1. Sensor Fabrication 

The combined development of MZI and FBG sensors is fabricated according to Figure 3. In 

the figure, the sensor consists of leading SMF (8.2 micrometers, 12.5 micrometers) trapezoidal 



 

Development of fiber Bragg grating as a sensor based on Mach-Zehnder … (Meyzia) 

37 

structure 1, sensing area (middle part of SMF), trapezoidal structure 2, output SMF and FBG. The 

trapezoidal structure is fabricated using a fusion splicer (FITEL S178C).  

 

Figure 3. Schematic of FBG Sensor based on MZI. 

The length of the SMF is stretched using an arc discharge to form a down-taper (the discharge 

intensity value is 3 bits and the discharge time is 1500 ms). The length of the down-taper Z is about 

606 μm and the width D is about 44 μm as shown in Figure 4 (a). The middle region of the down-taper 

is thinly sliced by a fiber cleaver on an optical lens (Olympus DSX110) to form a trapezoid structure 

as shown in Figure 4 (b). The optical lens can magnify up to 20 × 10 times and can clearly observe the 

same trapezoid structure shape within some experimental errors. The two trapezoids were welded to 

the center of the SMF using a fusing welder in manual welding (the discharge intensity was 90 bits 

and the discharge time was 1300 ms each) as shown in Figure 4 (c). 

      

 

Figure 4. Image for: (a) image of the down-taper Z; (b) image of the trapezoid structure; and (c) image of the 

splicing area between the trapezoid and the SMF. 

3.1.2. MZI Simulation 

One of the simulations that uses MZI as an interferometer is a simulation using the beam 

propagation method (BPM). This simulation is used with varying lengths to obtain the optical field 

distribution of the MZI. This simulation uses an input wavelength of 1550 nm, a refractive index of 

1.0 and a cross-sectional length of the SMF, namely 1 cm, 3 cm, 5 cm, which can be seen in Figure 5. 

In the figure, it can be seen that light passes through the cladding when light is transmitted to 

the trapezoid structure, so that the cladding mode appears. The cladding mode and core mode 

simultaneously transmit light in the middle of SMF. The coupling mode appears because the light 

passes through the trapezoid structure 2 as a beam combiner. The results of this simulation show that 

the energy of MZI with SMF in the middle of 3 cm changes in the core and cladding. This causes 

more modes in the cladding that can be stimulated by MZI with SMF in the middle of 3 cm. In 

addition to the simulation results, in the experiment, the difference in energy loss and extinction values 
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must also be considered. Due to several factors above, the length of the middle part of SMF in the 

experiment is 3 cm. 

      
 

 

Figure 5. Simulation of optical field distribution in MZI: (a) variation of 1 cm in the middle area of SMF; (b) 

variation of 3 cm in the middle area of SMF; and (c) variation of 5 cm in the middle area of SMF. 

3.1.3. Sensor Principle 

The use of transmission characteristics in the interferometer can understand the spatial 

frequency spectrum of the MZI in experiments with a temperature of 25°C and a refractive index of ~ 

1.0 which can be explained using the fast fourier transform (FFT) shown in Figure 6. 

      

Figure 6. Spatial frequency spectrum of MZI. 

The figure shows that there is one dominant excited cladding mode and several weakly excited 

cladding modes in the spatial frequency spectrum. Interference mainly occurs between the dominant 

cladding mode and the core mode, while the interference between the weak cladding mode and the 

core mode can be ignored because it has a low intensity. The reference intensity can be found by 

equation [11]:  

       ∑ √          
        

 
 (13) 
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where, Ico
 and Icl

 are the light intensities of the core mode and cladding mode. L is the length of the 

center region of the SMF. 

The interference wavelength can be obtained through the equation:  

     
    

       

    
 (14) 

where, the value of k is an integer. 

The effective refractive index values in the core and cladding modes change when the ambient 

temperature changes, while the change in refractive index only affects the effective refractive index of 

the cladding mode. Then the variation of the value of λval
MZI

 with changes in ambient temperature and 

refractive index can be concluded from Equation (14) as:  
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where, ΔT and ΔRI are the ambient temperature difference and refractive index, ξ
co

 and ξ
cl
 are 

the thermo-optic coefficients of the core mode and cladding mode, ρ is the effective coefficient of the 

variation of neff
cl caused by the refractive index. Δλval

MZI is the variation of λval
MZI obtained from the 

refractive index and temperature. Based on Equation (14), then Δλval
MZI

 can be explained in more 

detail by the equation:  
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By combining Equations (15) and (16), the temperature sensitivity and refractive index Kval
T
 

and Kval
RI

 then:  
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Equation (17) explains that the blue color in the transmission spectrum will shift when the 

refractive index value increases while the red color in the transmission spectrum will shift when the 

temperature increases. 

4. RESULTS AND DISCUSSION 

4.1. Development of FO Use in Various Forms of Technology 

Fiber optic sensors are a promising technology in various applications so that scientists 

develop the advantages of this fiber optic compared to using other methods. This review evaluates the 

current state of technology and explains the potential for significant use of fiber optic sensors and 

provides further explanation of how fiber optics will be used in the future [41-43]. 

4.2. Detection of Medical Devices 

One of the developments of medical devices in detecting human movement is very important 

to do so that monitoring the performance of body organs as a whole and clinical care becomes easier. 

Periodic evaluation of atypical movements and vibrations in the stimulated hands so that they become 

early symptoms of deadly diseases such as Parkinson's, Alzheimer's and diabetes, provides 

convenience in early analysis and treatment of these diseases [42]. This study has developed a sensor 

that can be used to detect human movement forms on a large scale such as bending the legs, arms, 

hands and spine, and on a small scale such as fine muscle movements in the neck, chest and face 

through continuous signals [44]. 
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Figure 7. Image for: (a) monitoring of composite motion of elbow, shoulder abduction and elbow flexion with 

memory system [45]; (b) Optical image of BSNG system; (c) and (d) wireless transmitter and wireless receiver; 

(e) image of underwater rescue system [46]; and (f) difference of motion that corresponds to analog display 

detected on glove [47]. 

The development of this research uses hand and limb movements because the movements 

come from human life activities. This implementation makes this development quite promising 

because it is more efficient and easy to do. Previous studies used elastic devices made of neatly 

arranged SWCNT films. The SWCNT layer used must be large so that the detection of knee joint 

movement can be done. The study began by detecting the movement of the knee moving in one 

direction and rotating on its axis, then the knee was stretched and moved continuously so that the skin 

deformation changed constantly. The sensor can detect and distinguish various movements from 

stretching, bending the knee joint and bending, marching, squatting and jumping and several 

combinations of these movements [44]. New developments in strain sensors have been integrated with 

stretchable memory devices, some studies use human movement memory systems [45]. 

Figure 7 (a) shows that limb motion can be detected and stored in memory device by 

connecting to limb joints, so that deformation caused by limb motion can be read. Previous research 

used Bionic Stretchable Nanogenerator (BSNG) inspired by electric eel. BSNG integrated with 

transmission module and wireless transmission system for human body is built because it has good 

mechanical response, flexibility and output. This research can be seen in Figure 7b-e. In the research, 

there is a linear relationship between BSNG output voltage on human arm and elbow bend. This 

research also found that breaststroke has the largest motion amplitude signal compared to other styles 

caused by larger amplitude in arm and leg movements. 

The study also explains the results of finger movements from each human movement. The use 

of flexible strain sensors and integration into gloves, finger movement monitoring can be detected as a 

whole. Changes in electrical parameters related to finger curvature can be found when finger 

movements stretch the sensor strip [48-50]. This study continued by developing a highly sensitive 

motion sensor based on the implantation of elastic microcapsules into bionic structures [48]. When the 

motion sensor is connected to the finger, pressure and strain can be detected simultaneously 
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continuously. The relative current increases gradually according to the angle of finger movement. This 

study uses MWCNT/TPE so that the sensor can operate in wet conditions because its surface is 

superhydrophobic. This sensor can detect differences in finger movement in real time by collecting 

changes in the resistance of each finger in the data acquisition system. This device can analyze signal 

changes and compare them with a configured database as shown in Figure 7f. 3. Civil Engineering 

Landslides are a significant hazard that can cause many casualties and property losses. Continuous 

measurement and time analysis of geotechnical parameters in geotechnical monitoring can detect 

anomalous behavior in the early phase [51-53]. Geotechnical inclinometers are used to determine the 

shape of landslides using the magnitude of direction, speed and depth. These parameters are very 

important in understanding landslide behavior and slope movement to develop intervention strategies 

[54]. The use of fiber optic sensors is very necessary because of its resistance to corrosion and the 

ability to detect shapes continuously without visual contact. The development of research on 

inclinometers focuses on the design of distributed multi-fiber optic inclinometers for monitoring 

ground motion by utilizing strain sensors embedded in tubes such as Figure 8 [53, 55]. This sensor has 

a cross-section with the same configuration as multicore fiber optics, but with a larger core distance to 

achieve better accuracy when measuring the curvature and shape of the sensor [56, 57]. 

 

Figure 8. Image for: (a) FBG schematic on the inclinometer and (b) MFC diameter. 

4.3. Development of Surgical Equipment 

Dynamic detection of shape and position to place medical equipment on the human body is 

very important in improving accuracy and minimizing invasiveness [58, 59]. Clinical procedures such 

as the use of fluoroscopy have several disadvantages including low data acquisition speed, high cost 

and high radiation exposure [57, 58, 60-63]. Fiber optic sensors have great advantages in various 

medical applications including colonoscopy [64-67] and epidural administration [61], eye and heart 

checks as seen in Figure 9 [66], biopsies [64, 66] endovascular navigation [65] and invasive surgery 

[62, 67-69]. The development of this optical fiber can be implemented efficiently in various medical 

devices such as needles, catheters, endoscopes because it has the advantages of embedding 

capabilities, biocompatibility, flexibility, light weight, small size, high regularity. In previous research, 

Lunwei et al in 2014 [70] made an intelligent colonoscopy consisting of FBG mounted on a 900 mm 
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long flexible wire. This sensor was implemented in a colonoscope and tested on the large intestine of a 

living pig, so that it was able to reconstruct the shape of the medical device. Then Bulan et al in 2014 

designed a very flexible and thin FOSS so that it could be integrated into an invasive surgical system 

and was able to track dynamically and in real time (the speed of the sampling 3.74 Hz) with a position 

error of about 1.50% of the total length of the sensor [61]. This sensor is made by attaching three 

optical fibers where the FBG is planted in a triangle shape that has a length of 115 mm and can be bent 

up to 900. In 2014 Roesthuis developed a flexible nitinol (NiTi) needle and integrated from 12 FBG 

sensors in three-dimensional development [69]. This sensor can detect curvature, axial strain, 

maximum error shape between experiments and results based on beam theory of 0.20, 0.51 and 1.66 

mm by taking into account deflection in single bending, double bending and external plane. 

 

Figure 9. Thermistor catheter for temperature measurement in the pulmonary artery [68]. 

5. CONCLUSION 

This review focuses on the development of fiber optic sensors from several application 

technologies. This development is actually based on the advantages that make the use of fiber optic 

sensors more competitive than the use of other sensors. This article presents a comprehensive review 

of the development of fiber optic sensors and their applications. The existence of a simple and easy 

way to measure temperature and mechanical strain and has bio-compatibility and biodegradability 

properties, causing the use of fiber optic sensors to be in great demand for non-invasive use in 

detecting parameters in medical applications such as body movement, body temperature, blood 

pressure, metabolites, and detecting bital signs of subjects that can be connected to passive or active 

electronic transmission modules, signal processing equipment, power supplies and interface displays 

via wireless. The use of interferometers in fiber optic sensors also increases accuracy, and has very 

high sensitivity and very fast response. This sensor also has advantages such as high coupling 

efficiency, low cost. This article also provides a detailed overview of the potential and inspiration for 

scientists and field technicians in the development of future research. All sensors in the future are 

expected to be quantum-based fiber optic sensors which are a promising alternative means for 

luminescence-based bioanalytical techniques, and can also be used in biomedical devices by 

developing the geometric properties of optical fibers. 
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