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ABSTRACT  ARTICLE INFO 

BCH-algebra is a non-empty set with the binary operation ∗ and the 
constant 0, and statisfying the certain axioms. A mapping of d from X to 
itself is said to be a derivation in BCH-algebra if d is both (l, r)-
derivation and (r, l)-derivation in BCH-algebra, where X is BCH-algebra. 
This article discusses the concepts of (l, r)-(f, g)-derivation, (r, l)-(f, g)-
derivation, and (f, g)-derivation in BCH-algebra, and investigates the 
properties (l, r)-(f, g)-derivation, (r, l)-(f, g)-derivation and (f, g)-
derivation in BCH-algebra. 
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1. INTRODUCTION 

Hu and Li [1] introduced an algebraic structure called BCH-algebra, which is a generalization 

of BCK-algebra and BCI-algebra. BCH-algebra is a non-empty set   with the binary operation * and 

the constant 0, which satisfies the axiom (BCH1)  ∗    , (BCH2)     and     imply    , 

where     if and only if  ∗    , and (BCH3)   ∗   ∗     ∗   ∗   for any       [2, 3]. 

The concepts of BCH-algebra have been discussed by researchers, for instance the concept of 

derivation [4-9]. The derivation in BCI-algebra was introduced by Jun and Xin [10]. In 2005 Zhan and 

Liu [11] introduced the notion of derivation in BCI-algebra to find the concept of  -derivation in BCI-

algebra, where   is the endomorphism in BCI-algebra [12-21]. Al-shehri [22] applied the concept of 

the derivation of BCI-algebra to B-algebra in 2010, then the notion was introduced by Ardekani and 

Davvas [23] in order to obtain a new idea, called      -derivation in B-algebra, where   and   is an 

endomorphism of B-algebra. In 2015, Bawazeer and Bashammakh [24] introduced the notion of 

derivation in BCH-algebra and fixed sets. The notion of derivation defined the concept of derivation in 

BCH-algebra. A mapping   from   to itself is called to be a derivation in BCH-algebra if    is both an 

     -derivation and      -derivation in BCH-algebra, with   is BCH-algebra. 

The objective of this paper is to define      -derivation in BCH-algebra and investigate some 

of the properties of      -derivation in BCH-algebra. 

2. PRELIMINARIES 

In this section, the definition and some properties of BCH-algebra are given. 

2.1. Definition 1 

BCH-algebra is an algebra     ∗     that satisfies the following axioms [11], for all      : 

https://creativecommons.org/licenses/by/4.0/
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(BCH1)  ∗     

(BCH2)     and     imply    , where     if and only if  ∗     

(BCH3)   ∗   ∗     ∗   ∗   

In BCH-algebra     ∗     the following proporties apply, for all      : 

(BCH4)   ∗   ∗    ∗     

(BCH5)   ∗     implies     

(BCH6)  ∗   ∗      ∗   ∗   ∗    
(BCH7)  ∗     

(BCH8)   ∗   ∗    ∗   

(BCH9)  ∗     implies  ∗    ∗   

(BCH10)  ∗   ∗      

Example, let           be a set with Cayley table as follows, 

Table 1. Cayley table for     ∗    . 

∗ 0 1 2 3 

0 0 0 2 2 

1 1 0 2 2 

2 2 2 0 0 

3 3 2 1 0 

From Table 1 it can be shown that     ∗     satisfying all axioms BCH-algebra, so that 

    ∗     is BCI-algebra. 

For a BCH-algebra     ∗       we denote      ∗   ∗   . A mapping   of a BCH-algebra 

  into itself is called an endomorphism of   if    ∗        ∗     , for all      . Note that 

      . 

2.2. Definition 2 

Let     ∗    be a BCH-algebra and   is a mapping from   into itself [16]. The   mapping is to 

be      -derivation in  , if it satisfies    ∗         ∗       ∗       for all       and   

called      -derivation in   if it satisfies    ∗      ∗            ∗    for all        
Moreover, If   is both an      -derivation and      -derivation, then   is derivation in  . 

2.3. Definition 3 

Let     ∗     be a BCH-algebra and   is a mapping from   into itself [24]. The   mapping is 

called to be regular if       . 

3. RESULTS AND DISCUSSION 

This section consider the main results of research, which is to define      -derivation in 

BCH-Algebra, where   and   are endomorphisms of BCH-Algebra [25-28]. Then, define      -
derivation in BCH-algebra and construct its properties which are expressed in proposition form. 

3.1. Definition      -Derivation in BCH-Algebra 

Let     ∗     be a BCH-algebra and   is a mapping from   to itself, where     is an 

endomorphism of  . The   mapping is said to be      -     -derivation in   if it satisfies    ∗    
     ∗            ∗       for all       and   called      -     -derivation in   if it satisfies 

   ∗         ∗            ∗       for all        Moreover, if   is both an      -     -
derivation and      -(    -derivation, then   is     -derivation in  . 

Example, let            be a set defined in Table 2, 
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Tabel 2. Tabel Cayley untuk     ∗    . 

∗ 0 1 2 

0 0 0 2 

1 1 0 2 

2 2 2 0 

It can be shown that     ∗    , satisfies all BCH-algebra axioms such that     ∗    . Define a 

map           by: 

     {
             
            

      {
             
          

      {
         
          
          

 

So it can be proved that   and   are endomorphisms of   and d is      -derivation in  . 

3.1.1. Proposition 1 

Let     ∗     be a BCH-algebra,   is a self-map of  , where     is an endomorphism of   .  

1. Let   be      -     -derivation in  . If   regular then               , for all    . 

2. Let   be      -     -derivation in  .   regular if and only if               , for all    .  

Proof, 

1. Let   is       -     -derivation in  . Since   regular, then       , and by axiom (BCH7): 

        ∗    
          ∗             ∗       
          ∗          ∗    
               

Hence, this shows that               , for all      
2. Let   is     -     -derivation in  . Since   regular, then       , and by axiom (BCH7): 

        ∗    
          ∗             ∗       
          ∗          ∗    
               

Hence, this shows that               for all      Conversely, let   is      -     -

derivation in   . If                , then for    , we have: 

                 
              
         ∗      ∗    
         ∗      
       

Hence, this shows that   is regular. 

3.1.2. Proposition 2 

Let     ∗     be a BCH-algebra.  

1. If   is a      -     -derivation in  , then    ∗        ∗     , for all      . 

2. If   is a      -     -derivation in  , then    ∗        ∗     , for all      . 

Proof, 

1. Since    is a      -     -derivation in   and by axiom (BCH10) we have: 
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   ∗         ∗            ∗       
   ∗         ∗      ∗      ∗      ∗      ∗       
   ∗        ∗      

Hence, this shows that     ∗         ∗      for all      . 

2. Since   is a      -     -derivation in   and by axiom (BCH10) we have: 

   ∗         ∗             ∗       

   ∗    (    ∗     ) ∗  (     ∗     ) ∗      ∗       

   ∗        ∗       

Hence, this shows that     ∗        ∗      for all       . 

3.1.3. Proposition 3 

Let     ∗     be a BCH-algebra. 

1. If   is a      -     -derivation in   and   regular, then           for all    . 

Proof, 

1. Let   is a      -      -derivation in  . Since   regular, then       . By axiom (BCH7) and 

(BCH10), for all     we obtained: 

        ∗    
          ∗             ∗       
                
         ∗       ∗       
          

Hence,            for all    . 

3.1.4. Proposition 4 

Let     ∗     be a BCH-algebra,   is a mapping from   to itself. 

1. Let   be      -     -derivation in  . If     ∗        for all    , then   regular. 

2. Let   be      -     -derivation in  . If     ∗        for all    , then   regular. 

Proof, 

1. Let    is       -     -derivation in  . By axiom (BCH1) and (BCH7), for all     obtained: 

        ∗    
          ∗            ∗       
            ∗       

     (    ∗     ) ∗       ∗      ∗    

     (    ∗     ) ∗      ∗       

       

Hence,        then it is proved that   regular. 

2. Let    is      -     -derivation in  . By axiom (BCH1) and (BCH7), for all     obtained: 

        ∗    
          ∗            ∗       
            ∗       

     (    ∗     ) ∗       ∗      ∗    

     (    ∗     ) ∗      ∗       

       

Hence,        then it is proved that   regular. 
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4. CONCLUSION 

This article discussed the definition of       and      -    )-derivation in BCH-algebra and 

investigate its proporties. In general, the properties of       and      -    )-derivation in BCH-

algebra obtained for   which satisfies the regular properties that is when       . 
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