

Vol. 2, No. 1, October 2021, pp. 1-8, DOI: 10.59190/stc.v2i1.197

On left f_q -derivations of *B*-algebras

Egytia Yattaqi, Sri Gemawati*, Ihda Hasbiyati

Department of Mathematics, Universitas Riau, Pekanbaru 28293, Indonesia

ABSTRACT **ARTICLE INFO** In this paper, we introduce the notion of left f_q -derivation of *B*-algebra Article history: and investigate some related properties. Among them are properties of Received Apr 16, 2021 left f_q -derivation d_0^f of *B*-algebra (*X*;*,0) and given properties of $d_a^f(x)$. Revised Jun 3, 2021 Then, we discuss the properties of the regularleft f_q -derivation on B-Accepted Jun 28, 2021 algebras and composition properties of f_q -derivation on particular B-Keywords: algebra, namely on BM-algebra. **B**-Algebra BM-Algebra Inside f_q -Derivation Left f_q -Derivation Outside f_q -Derivation This is an open access article under the <u>CC BY</u> license. (†) * Corresponding Author E-mail address: gemawati.sri@gmail.com

1. INTRODUCTION

Neggers and Kim (2002) introduce the notion of B-algebra [1], which is a non-empty set X with a constant 0 and a binary operation "*" donated by (X; *, 0), satisfying the following axioms (B1) x * x = 0, (B2) x * 0 = x, and (B3) (x * y) * z = x * (z * (0 * y)) for all $x, y, z \in X$. Then, Kim and Kim (2008) introduce the notion of BG-algebra [2], which is the generalization of B-algebra satisfying the following axioms (B1), (B2), and (BG) (x * y) * (0 * y) = x for all $x, y \in X$. Kim and Park (2005) introduce 0-commutative B-algebra satisfying the following axioms x * (0 * y) = y * (0 * x) for all $x, y \in X$ [3]. Kim and Kim (2006) also introduce *BM*-algebra [4], which is a specialization of *B*algebra, satisfying the following axioms (B2) and (A2) (z * x) * (z * x) = y * x for all $x, y, z \in X$. The relationship between B-algebra and BM-algebra is that every BM-algebra is B-algebra and every 0commutative *B*-algebra is *BM*-algebra [5-8].

The first time, the notion of derivation is discussed in ring and near ring. In the development of abstract algebra, the notion of derivation is also discussed in otheralgebraic structures [9-13]. Abujabal and Al-Shehri (2007) introduce the left derivation on BCI-algebra [14], and then Al-Shehri (2010) introduces the derivation of B-algebra [15]. The results define a left-right or (l,r)-derivation, a rightleft or (r,l)-derivation, and a regular in *B*-algebra. Then, also obtained the properties of the derivation on B-algebra. The concept of f_q -derivation is another type of derivation, as discussed by Al-Kadi (2016) regarding f_q -derivation on G-algebra [16]. Furthermore, Muangkarn et al. (2021) discussed the concept of f_q -derivation on *B*-algebra by defining a mapping involving endomorphisms [17]. However, the article has not discussed the properties of left f_q -derivation of *B*-algebra.

This article defines the concept of left f_q -derivation on B-algebra so that its properties are obtained. Then, we discuss the properties of the regular left f_{a} -derivation and the f_{a} -derivation composition properties of BM-algebra.

2. PRELIMINERIES

In this section, some definitions are needed to construct the research's primary results, with definitions and theories about *B*-algebra and *BM*-algebra. Then, given the left derivation concept of *BCI*-algebra and f_q -derivation of *B*-algebra, which have been discussed in [1, 3, 14, 15, 17-19, 20-25].

Definition 2.1. A *B*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms [1]:

for all $x, y \in X$.

Example 2.1. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with Cayley's table as seen in Table 1.

*	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Table 1. Cayley's table for (X; *, 0).

It can be seen in Table 1 that the main diagonal is 0, so it applies x * x = 0 (*B1*) and the value in the second column represents the result of the binary operation, which is itself so that it satisfies x * 0 = x (*B2*). Then, suppose $x, y \in X$, from Table 1 it can be proved that (x * y) * z = x * (z * (0 * y)) (*B3*). So, (*X*;*,0) is a *B*-algebra.

Lemma 2.2. If (*X*;*,0) is a *B*-aljabar [1], then

- (i) 0 * (0 * x) = x,
- (ii) (x * y) * (0 * y) = x,
- (iii) y * z = y * (0 * (0 * z)),
- (iv) x * (y * z) = (x * (0 * z)) * y,
- (v) x * z = y * z implies x = y,
- (vi) x * y = 0 implies x = y, for all $x, y, z \in X$.

Proof : Lemma 2.2 has been proved in [1].

Definition 2.3. A *B*-algebra (X;*,0) is a 0-commutative *B*-algebra if it satisfies x * (0 * y) = y * (0 * x) for all $x, y, z \in X$ [3].

Definition 2.4. A *BM*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms [4]:

- $(A1) \quad 0 * x = x,$
- $(A2) \quad (z*x)*(z*y)=y*x, \, \text{for all } x,y,z\in X.$

Example 2.2. Let $X = \{0, 1, 2\}$ be a set with Cayley's table as seen in Table 2.

It can be seen in Table 2 the value in the second column represents the result of the binary operation, which is itself so that it satisfies x * 0 = x (*A1*). Then, suppose $x, y, z \in X$, from Table 2 it can be proved that (z * x) * (z * y) = y * x (*A2*). So, (X; *, 0) is a *BM*-algebra.

Tabel 2. Tabel Cayley for (X; *, 0)

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Lemma 2.5. If (*X*;*,0) is a *BM*-aljabar [4], then

- (i) x * x = 0,
- (ii) 0 * (0 * x) = x,
- (iii) 0 * (x * y) = y * x,
- (iv) (x * z) * (y * z) = x * y,
- (v) x * y = 0 if only if y * x = 0,

for all $x, y, z \in X$.

Proof. Lemma 2.5 has been proved in [4].

Theorem 2.6 Every BM-algebra is a B-algebra [4].

Proof. Theorem 2.6 has been proved in [4].

The converse of Theorem 2.6 does not hold in general. As in example 2.1 (X;*,0) is a *B*-algebra but not *BM*-algebra since $(5*1)*(5*4) = 4 \neq 5 = 4*1$.

Theorem 2.7 If (X; *, 0) is a *BM*-aljabar [4], then (x * y) * z = (x * z) * y for all $x, y \in X$.

Proof. Theorem 2.7 has been proved in [4].

Definition 2.8 A Coxeter algebra is a non-empty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms [9]:

$$\begin{array}{ll} (C1) & x \ast x = 0, \\ (C2) & x \ast 0 = x, \\ (C3) & (x \ast y) \ast z = x \ast (y \ast z), \end{array}$$

for all $x, y, z \in X$.

Theorem 2.9 If (X; *, 0) is a *BM*-algebra with 0 * x = x for all $x \in X$ [4], then (X; *, 0) is Coxeter algebra.

Proof. Theorem 2.9 has been proved in [4].

Corollary 2.10 An algebra (*X*;*,0) is a Coxeter algebra if and only if it is a *BM*-algebra with 0 * x = x for all $x \in X$ [4].

Proof. Corollary 2.10 has been proved in [4].

The concept of derivation on *B*-algebra has been discussed in [6]. Let (X; *, 0) is a *B*-algebra, then $x \land y = y * (y * x)$, for all $x, y \in X$.

Definition 2.11 Let (X;*,0) be a *B*-algebra [6]. A mapping of *d* from *X* to itself is called (l,)-derivation of *X* if it satisfies $d(x*y) = (d(x)*y) \land (x*d(y))$ for all $x, y \in X$ and we say that *d* is a (r,)-derivation of *X* if it satisfies $d(x*y) = (x*d(y)) \land (d(x)*y)$ for all $x, y \in X$. Moreover, if *d* is both an (l,)-derivation and an (r,)-derivation, we say that *d* is a derivation of *X*.

Let (X;*,0) is a *B*-algebra. A mapping of *d* from *X* to itself is called regular if it satisfies d(0) = 0.

Definition 2.12 Let (X; *, 0) be a *BCI*-algebra [5]. By a left derivation of X, we mean a self-map d of *X* satisfying $d(x * y) = (x * d(y)) \land (y * d(x))$ for all $x, y \in X$.

A self-map f on a B-algebra X = (X; *, 0) is called an endomorphism if f(x * y) = f(x) *f(y) for all $x, y \in X$. The self-map d_q^f on X is defined by $d_q^f(X) = f(x) * q$ for all $x, q \in X$.

Definition 2.13 Let f be an endomorphism of a B-algebra X = (X; *, 0) [8]. A self-map d_q^f on X is called:

- An inside f_q -derivation of X if $d_q^f(x*y) = d_q^f(x) * f(y)$ for all $x, y \in X$. 1)
- An outside f_q -derivation of X if $d_q^f(x*y) = f(x)*d_q^f(y)$ for all $x, y \in X$. 2)

an f_q -derivation of X if it is both an outside and inside f_q -derivation of X.

3. RESULTS AND DISCUSSIONS

This section provides the study's preliminary results, namely defining left f_q -derivation on Balgebra using the same method as defining left derivation on BCI-algebra. Then, the properties are given by the left f_q -derivation on B-algebra and the properties of the f_q -derivation composition on BMalgebra.

Definition 3.1 Let (X; *, 0) be a *B*-algebra and *f* is endomorphism of *X*. A self-map d_q^f on *X* is called left f_q -derivation of X satisfying $d_q^f(x * y) = (f(x) * d_q^f(y)) \land (f(y) * d_q^f(x))$ for all $x, y \in X$.

Example 3.1 Let $(\mathbb{Z}; -, 0)$ be *B*-algebra. We define the mapping of f and d_q^f of \mathbb{Z} to itself with f(x) = x and $d_q^f(x) = f(x) - q$ for all $x \in \mathbb{Z}$. It can easily be proven that f is an endomorphism of Z. It will be checked whether d_q^f is left f_q -derivation of Z. For all $x, y \in \mathbb{Z}$ is obtained $d_q^f(x - y) =$ f(x - y) - q = x - y - q and,

$$(f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = (f(x) - (f(y) - q)) \wedge (f(y) - (f(x) - q)) (f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = (x - y - q) \wedge (y - x + q) (f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = (y - x + q) - [(y - x + q) - (x - y - q)] (f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = x - y - q$$

So that it satisfies $d_q^f(x-y) = (f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x))$. Thus, it is proved that d_q^f is left f_a -derivation on \mathbb{Z} .

Let (X; *, 0) be a *B*-algebra. A mapping of d_q^f on X to itself is called regular if it satisfies $d_{a}^{f}(0) = 0.$

Theorem 3.2. Let (X; *, 0) be a *B*-algebra and *f* is an endomorphism of *X*. If d_q^f is left f_q -derivation on X, then

- (i) $d_q^f(0) = f(x) * d_q^f(x)$ for all $x \in X$, (ii) d_0^f is regular.

Proof. Let (X; *, 0) be a *B*-algebra and *f* is an endomorphism of *X*.

Since d_q^f is left f_q -derivation on X, by the axiom B1 and B2 we get: (i)

 $\begin{aligned} &d_q^f(0) = d_q^f(x * x) \\ &d_q^f(0) = (f(x) * d_q^f(x)) \wedge (f(x) * d_q^f(x)) \\ &d_q^f(0) = \left(f(x) * d_q^f(x)\right) * \left[\left(f(x) * d_q^f(x)\right) * (f(x) * d_q^f(x))\right] \\ &d_q^f(0) = \left(f(x) * d_q^f(x)\right) * 0 \\ &d_q^f(0) = f(x) * d_q^f(x) \end{aligned}$

Hence, it is obtained that $d_q^f(0) = f(x) * d_q^f(x)$ for all $x \in X$.

(ii) By (1) and axiom B1 we have:

$$d_0^f(0) = f(x) * d_0^f(x)$$

$$d_0^f(0) = f(x) * (f(x) * 0)$$

$$d_0^f(0) = f(x) * f(x)$$

$$d_0^f(0) = 0$$

So, it is obtained that d_0^f is regular.

Theorem 3.3. Let (X; *, 0) be a *B*-algebra, *f* is an endomorphism of *X* and d_q^f is left f_q -derivation regular on *X*. d_q^f is the identity function if and only if *f* is the identity function.

Proof. Let d_q^f is left f_q -derivation regular on *X*. Since d_q^f is the identity function, then $d_q^f(x) = x$ for all $x \in X$. By theorem 3.2 (1), axiom *B1* and lemma 2.2 (v) we have:

$$d_q^f(0) = 0$$

$$f(x) * d_q^f(x) = 0$$

$$f(x) * x = x * x$$

$$f(x) = x$$

thus, it is proved that f is an identity function. Conversely, if f is an identity function, then f(x) = x for all $x \in X$. By theorem 3.2 (1), axiom B1 and lemma 2.2 (v), we have:

$$d_q^f(0) = 0$$

$$f(x) * d_q^f(x) = 0$$

$$x * d_q^f(x) = d_q^f(x) * d_q^f(x)$$

$$x = d_q^f(x)$$

so, it is proved that d_q^f is an identity function.

Theorem 3.4 Let (X; *, 0) be a *B*-algebra, *f* is an endomorphism of *X* and d_q^f is left f_q -derivation on *X*. d_q^f regular if and only if $f = d_q^f$.

Proof. Let d_q^f is regular on X. By theorem 3.2 (1), axiom B1 and lemma 2.2 (v) for all $x \in X$ are obtained:

$$d_q^f(0) = 0$$

$$f(x) * d_q^f(x) = d_q^f(x) * d_q^f(x)$$

$$f(x) = d_q^f(x)$$

thus, it is proved that $f = d_q^f$. Conversely, suppose $f = d_q^f$. Based on theorem 3.2 (i) and the axiom *B1* is obtained:

$$d_q^f(0) = f(x) * d_q^f(x) = f(x) * f(x) d_q^f(0) = 0.$$

so, it is proved that d_q^f is regular on X.

BM-algebra is a particular form of *B*-algebra, so the definition of inside and outside f_q -derivation on *BM*-algebra is the same as on *B*-algebra. The concept of left f_q -derivation on *BM*-algebra will not be discussed further because on *BM*-algebra (X;*,0) it applies $x \land y = y * (y * x) = x$ for all $x, y \in X$. Therefore, the concept of left f_q -derivation on *BM*-algebra is the same as outside f_q -derivation on *BM*-algebra.

Definition 3.5 Let (X; *, 0) be a *B*-algebra, *f* is an endomorphism of *X*, d_q^f and D_q^f are mappings from *X* to itself. $d_q^f \circ D_q^f: X \to X$ is defined as $d_q^f \circ D_q^f(x) = d_q^f(D_q^f(x))$ for all $x \in X$.

Here are given the properties derived from the concept of composition f_q -derivation on BM-algebra.

Theorem 3.6 If (*X*;*,0) be a *BM*-algebra and *f* is the identity endomorphism of *X*, then $d_0^f \circ D_0^f$ is f_{q} -derivation of *X*.

Proof. We show that $d_0^f \circ D_0^f$ is inside f_q -derivation as well outside f_q -derivation on *X*. By axioms (A1) on *BM*-algebra for each $x \in X$ obtained:

$$(d_0^f \circ D_0^f)(x) = d_0^f \left(D_0^f(x) \right)$$

$$(d_0^f \circ D_0^f)(x) = d_0^f (f(x) * 0)$$

$$(d_0^f \circ D_0^f)(x) = d_0^f (f(x))$$

$$(d_0^f \circ D_0^f)(x) = d_0^f(x)$$

$$(d_0^f \circ D_0^f)(x) = f(x) * 0$$

$$(d_0^f \circ D_0^f)(x) = f(x)$$

so that

$$\begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x * y) * 0 \begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x * y) \begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x) * f(y) \begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = (d_0^f \circ D_0^f)(x) * f(y)$$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is the inside f_q -derivation on X. Then, also from the axiom (A1) on BM-algebra, we get:

$$\begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x * y) * 0 \begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x * y) \begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x) * f(y) \begin{pmatrix} d_0^f \circ D_0^f \end{pmatrix} (x * y) = f(x) * (d_0^f \circ D_0^f)(y)$$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is outside f_q -derivation on X. It is therefore proven that $d_0^f \circ D_0^f$ is f_q -derivation on X.

Theorem 3.7 Let (X; *, 0) be a *BM*-algebra and *f* is the identity endomorphism of *X*.

- If d_q^f and D_q^f are inside f_q -derivation on X, then $d_q^f \circ D_q^f$ is inside f_q -derivation on XIf d_q^f and D_q^f are outside f_q -derivation on X, then $d_q^f \circ D_q^f$ is outside f_q -derivation on X(ii)

Proof. Let (X; *, 0) be a *BM*-algebra and *f* is the identity endomorphism of *X*

Since d_q^f and D_q^f are inside f_q -derivation on X, we have: (i)

$$\begin{pmatrix} d_q^f \circ D_q^f \end{pmatrix} (x * y) = d_q^f (D_q^f (x * y)) = d_q^f (D_q^f (x) * f(y)) = d_q^f (D_q^f (x)) * f(f(y)) \begin{pmatrix} d_q^f \circ D_q^f \end{pmatrix} (x * y) = (d_q^f \circ D_q^f) (x) * f(y),$$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is inside f_q -derivation of X.

Since d_q^f and D_q^f are outside f_q -derivation on X, we have: (ii)

$$\begin{pmatrix} d_q^f \circ D_q^f \end{pmatrix} (x * y) = d_q^f (D_q^f (x * y)) = d_q^f (f(x) * D_q^f (y)) = f(f(x)) * d_q^f (D_q^f (y)) \begin{pmatrix} d_q^f \circ D_q^f \end{pmatrix} (x * y) = f(x) * (d_q^f \circ D_q^f)(y),$$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is outside f_q -derivation of X.

Corollary 3.8 Let (X;*,0) be a *BM*-algebra, and *f* is the identity endomorphism of X. If d_q^f and D_q^f are f_q -derivation on X, then $d_q^f \circ D_q^f$ is f_q -derivation on X.

Proof. The corollary of 3.8 is immediately evident based on theorem 3.7 (i) and (ii).

Theorem 3.9 Let (X; *, 0) be a *BM*-algebra satisfying x * y = y * x for all $x, y \in X$. *f* is the identity endomorphism of X, d_q^f and D_q^f are f_q -derivation on X. If $d_q^f \circ f = f \circ d_q^f$ and $D_q^f \circ f = f \circ D_q^f$, then $d_q^f \circ D_q^f = D_q^f \circ d_q^f.$

Proof. Since d_q^f and D_q^f are f_q -derivation on X and $d_q^f \circ f = f \circ d_q^f$, $D_q^f \circ f = f \circ D_q^f$ then,

$$\begin{pmatrix} d_q^f \circ D_q^f \end{pmatrix} (x * y) = d_q^f (D_q^f (x * y)) (d_q^f \circ D_q^f) (x * y) = d_q^f (D_q^f (x) * f(y)) (d_q^f \circ D_q^f) (x * y) = d_q^f (f(y) * D_q^f (x)) (d_q^f \circ D_q^f) (x * y) = d_q^f (f(y)) * f (D_q^f (x)) (d_q^f \circ D_q^f) (x * y) = (d_q^f \circ f) (y) * (f \circ D_q^f) (x) (d_q^f \circ D_q^f) (x * y) = (f \circ d_q^f) (y) * (D_q^f \circ f) (x)$$

for all $x, y \in X$. On the other is obtained:

On left f_q -derivations of *B*-algebras (**Yattaqi et al.**)

$$\begin{pmatrix} D_q^f \circ d_q^f \end{pmatrix} (x * y) = D_q^f (f(x)) * f(d_q^f(y)) \\ \begin{pmatrix} D_q^f \circ d_q^f \end{pmatrix} (x * y) = (D_q^f \circ f)(x) * (f \circ d_q^f)(y) \\ \begin{pmatrix} D_q^f \circ d_q^f \end{pmatrix} (x * y) = (f \circ d_q^f)(y) * (D_q^f \circ f)(x) \end{cases}$$

for all $x, y \in X$. So, it is proved that $d_q^f \circ D_q^f = D_q^f \circ d_q^f$.

4. CONCLUSION

In this article, it can be concluded that the properties of left f_q -derivation are obtained in *B*-algebra. However, most of the properties are accepted for a regular left f_q -derivation. Then, the concept of left f_q -derivation on *BM*-algebra is not discussed in depth because it is equivalent to outside f_q -derivation on *BM*-algebra. The composition of f_q -derivation properties on *BM*-algebra is only obtained if f is an identity endomorphism on *BM*-algebra.

REFERENCES

- [1] Neggers, J. & Sik, K. H. (2002). On B-algebras. *Matematički Vesnik*, 54(1-2), 21–29.
- [2] Kim, C. B. & Kim, H. S. (2008). On BG-algebras. Demonstratio Mathematica, 41(3), 497–506.
- [3] Kim, H. S. & Park, H. G. (2005). On 0-commutative B-algebras. Sci. Math. Japonicae, 62(1), 7.
- [4] Kim, C. B. & Kim, H. S. (2006). On BM-algebras. *Scientiae Mathematicae Japonicae*, **63**(3).
- [5] Wu, G. & Kim, Y. H. (2018). Pregroups and pre-B-algebras. J. Appl. Math. Inform., 36, 51–57.
- [6] Deng, F. A., Ren, S., & Zheng, P. (2021). N(2,2,0) Algebras and related topic. J. Math. Res., 13.
- [7] Yattaqi, E., Gemawati, S., & Hasbiyati, I. (2021). fq-derivasi di BM-aljabar. *Jambura J. Math.*, 3(2), 155-166.
- [8] Ramadhona, C. & Gemawati, S. (2020). Generalized f-derivation of BP-algebras. IJMTT, 66.
- [9] Sugianti, K. & Gemawati, S. (2020). Generalized derivations of BM-algebras. Int. J. Contemp. Math. Sci, 15(4), 225–233.
- [10] Partala, J. (2018). Algebraic generalization of Diffie–Hellman key exchange. J. Math. Cryptol., 12(1), 1–21.
- [11] Brady, R. (2021). Arithmetic formulated in a logic of meaning containment. *The Australasian Journal of Logic*, **18**(5), 447–472.
- [12] Atteya, M. J. (2019). New types of permuting n-derivations with their applications on associative rings. *Symmetry*, **12**(1), 46.
- [13] Chen, L. & Fritz, T. (2021). An algebraic approach to physical fields. *Stud. Hist. Philos. Sci. A*, 89, 188–201.
- [14] Abujabal, H. A. & Al-Shehri, N. O. (2007). On left derivations of BCI-algebras. Soochow Journal of Mathematics, 33(3), 435.
- [15] Alshehri, N. (2010). Derivations of B-algebras. Science, 22(1).
- [16] Al-Kadi, D. (2016). fq-derivations of G-algebra. Int. J. Math. Math. Sci., 1–5.
- [17] Muangkarn, P., Suanoom, C., Pengyim, P., & Iampan, A. (2021). fq-Derivations of B-algebras. J. Math. Comput. Sci., 11(2), 2047–2057.
- [18] Kim, H. S., Kim, Y. H., & Neggers, J. (2004). Coxeter algebras and pre-Coxeter algebras in Smarandache setting. *Honam Mathematical Journal*, 26(4), 471–481.
- [19] Ashraf, M., Ali, S., & Haetinger, C. (2006). On derivations in rings and their applications. *Aligarh Bull. Math*, **25**(2), 79–107.
- [20] Afriastuti, S., Gemawati, S., & Syamsudhuha, S. (2021). On (f, g)-derivation in BCH-algebra. *Science, Technology and Communication Journal*, **1**(3).
- [21] Siswanti, T. F., Gemawati, S., & Syamsudhuha, S. (2021). t-derivations in BP-algebras. *Science, Technology and Communication Journal*, **1**(3).
- [22] Zhang, X., Borzooei, R. A., & Jun, Y. B. (2018). Q-filters of quantum B-algebras and basic implication algebras. *Symmetry*, *10*(11), 573.
- [23] Xin, X., Fu, Y., Lai, Y., & Wang, J. (2019). Monadic pseudo BCI-algebras and corresponding logics. Soft Computing, 23, 1499–1510.
- [24] Rezaei, A., Saeid, A. B., & Saber, K. Y. S. (2019). On pseudo-CI algebras. Soft Computing, 23.
- [25] Naraghi, H., & Taherkhani, B. (2016). On falling fuzzy ideals in BCI-algebra. *AFMI*, **11**(2).

Science, Technology and Communication Journal, 2(1), 1-8, October 2021