

Vol. 2, No. 1, October 2021, pp. 1-8, DOI: 10.59190/stc.v2i1.197

On left *f***q-derivations of** *B***-algebras**

Egytia Yattaqi, Sri Gemawati*, Ihda Hasbiyati Department of Mathematics, Universitas Riau, Pekanbaru 28293, Indonesia

ABSTRACT ARTICLE INFO In this paper, we introduce the notion of left *fq*-derivation of *B*-algebra **Article history:** and investigate some related properties. Among them are properties of Received Apr 16, 2021 left f_q -derivation d_0^f of *B*-algebra (*X*;*,0) and given properties of $d_q^f(x)$. Revised Jun 3, 2021 Then, we discuss the properties of the regularleft f_q -derivation on *B*-Accepted Jun 28, 2021 algebras and composition properties of *fq*-derivation on particular *B*-**Keywords:** algebra, namely on *BM*-algebra. *B*-Algebra *BM*-Algebra Inside *fq*-Derivation Left *fq*-Derivation Outside *fq*-Derivation *This is an open access article under th[e CC BY](https://creativecommons.org/licenses/by/4.0/) license.* G) 'cr *** Corresponding Author** E-mail address: gemawati.sri@gmail.com

1. INTRODUCTION

Neggers and Kim (2002) introduce the notion of *B*-algebra [1], which is a non-empty set with a constant 0 and a binary operation "*" donated by $(X;*,0)$, satisfying the following axioms (B1) $x * x = 0$, $(B2) x * 0 = x$, and $(B3) (x * y) * z = x * (z * (0 * y))$ for all $x, y, z \in X$. Then, Kim and Kim (2008) introduce the notion of *BG*-algebra [2], which is the generalization of *B*-algebra satisfying the following axioms (*B*1), (*B*2), and (*BG*) $(x * y) * (0 * y) = x$ for all $x, y \in X$. Kim and Park (2005) introduce 0-commutative *B*-algebra satisfying the following axioms $x * (0 * y) = y * (0 * x)$ for all $x, y \in X$ [3]. Kim and Kim (2006) also introduce *BM*-algebra [4], which is a specialization of *B*algebra, satisfying the following axioms (*B2*) and (*A2*) $(z * x) * (z * x) = y * x$ for all $x, y, z \in X$. The relationship between *B*-algebra and *BM*-algebra is that every *BM*-algebra is *B*-algebra and every 0 commutative *B*-algebra is *BM*-algebra [5-8].

The first time, the notion of derivation is discussed in ring and near ring. In thedevelopment of abstract algebra, the notion of derivation is also discussed in otheralgebraic structures [9-13]. Abujabal and Al-Shehri (2007) introduce the left derivation on *BCI*-algebra [14], and then Al-Shehri (2010) introduces the derivation of *B*-algebra [15]. The results define a left-right or (l, r) -derivation, a rightleft or (r,l) -derivation, and a regular in *B*-algebra. Then, also obtained the properties of the derivation on *B*-algebra. The concept of *fq*-derivation is another type of derivation, as discussed by Al-Kadi (2016) regarding *fq*-derivation on *G*-algebra [16]. Furthermore, Muangkarn et al. (2021) discussed the concept of *fq*-derivation on *B*-algebra by defining a mapping involving endomorphisms [17]. However, the article has not discussed the properties of left f_a -derivation of *B*-algebra.

This article defines the concept of left *fq*-derivation on *B*-algebra so that its properties are obtained. Then, we discuss the properties of the regular left f_q -derivation and the f_q -derivation composition properties of *BM*-algebra.

2. PRELIMINERIES

In this section, some definitions are needed to construct the research's primary results, with definitions and theories about *B-*algebra and *BM*-algebra. Then, given the left derivation concept of *BCI*-algebra and *fq*-derivation of *B*-algebra, which have been discussed in [1, 3, 14, 15, 17-19, 20-25].

Definition 2.1. A *B*-algebra is a non-empty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms [1]:

 $(B1) x * x = 0.$ $(B2) x * 0 = x$. $(B3)(x * y) * z = x * (z * (0 * y)),$

for all $x, y \in X$.

Example 2.1. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with Cayley's table as seen in Table 1.

÷				
		Τ.		3
2		0		
3			7	

Table 1. Cayley's table for $(X;*,0)$.

It can be seen in Table 1 that the main diagonal is 0, so it applies $x * x = 0$ (*B1*) and the value in the second column represents the result of the binary operation, which is itself so that it satisfies $x * 0 = x (B2)$. Then, suppose $x, y \in X$, from Table 1 it can be proved that $(x * y) * z = x * (z * (0 * y))$ (y)) (*B3*). So, $(X;*,0)$ is a *B*-algebra.

Lemma 2.2. If $(X;*,0)$ is a *B*-aljabar [1], then

- (i) $0 * (0 * x) = x$,
- (ii) $(x * y) * (0 * y) = x$,
- (iii) $y * z = y * (0 * (0 * z))$.
- (iv) $x * (y * z) = (x * (0 * z)) * y,$
- (v) $x * z = y * z$ implies $x = y$,
- (vi) $x * y = 0$ implies $x = y$, for all $x, y, z \in X$.

Proof : Lemma 2.2 has been proved in [1].

Definition 2.3. A *B*-algebra $(X; * , 0)$ is a 0-commutative *B*-algebra if it satisfies $x * (0 * y) = y * (0 *$ x) for all $x, y, z \in X$ [3].

Definition 2.4. A *BM*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms [4]:

 $(A1)$ $0 * x = x$, (*A2*) $(z * x) * (z * y) = y * x$, for all $x, y, z \in X$.

Example 2.2. Let $X = \{0, 1, 2\}$ be a set with Cayley's table as seen in Table 2.

It can be seen in Table 2 the value in the second column represents the result of the binary operation, which is itself so that it satisfies $x * 0 = x (A)$. Then, suppose $x, y, z \in X$, from Table 2 it can be proved that $(z * x) * (z * y) = y * x$ (A2). So, $(X;*, 0)$ is a *BM*-algebra.

Tabel 2. Tabel Cayley for $(X;*,0)$

0		
0	2	
	0	2
		0

Lemma 2.5. If $(X;*,0)$ is a *BM*-aljabar [4], then

- (i) $x * x = 0$,
- (ii) $0 * (0 * x) = x$,
- (iii) $0 * (x * y) = y * x$,
- (iv) $(x * z) * (y * z) = x * y$,
- (v) $x * y = 0$ if only if $y * x = 0$,

for all $x, y, z \in X$.

Proof. Lemma 2.5 has been proved in [4].

Theorem 2.6 Every *BM*-algebra is a *B*-algebra [4].

Proof. Theorem 2.6 has been proved in [4].

The converse of Theorem 2.6 does not hold in general. As in example 2.1 $(X;*,0)$ is a *B*algebra but not *BM*-algebra since $(5*1)*(5*4) = 4 \neq 5 = 4*1$.

Theorem 2.7 If $(X;*,0)$ is a *BM*-aljabar [4], then $(x * y) * z = (x * z) * y$ for all $x, y \in X$.

Proof. Theorem 2.7 has been proved in [4].

Definition 2.8 A Coxeter algebra is a non-empty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms [9]:

\n- (*C1*)
$$
x * x = 0
$$
,
\n- (*C2*) $x * 0 = x$,
\n- (*C3*) $(x * y) * z = x * (y * z)$,
\n

for all $x, y, z \in X$.

Theorem 2.9 If $(X;*,0)$ is a *BM*-algebra with $0 * x = x$ for all $x \in X$ [4], then $(X;*,0)$ is Coxeter algebra.

Proof. Theorem 2.9 has been proved in [4].

Corollary 2.10 An algebra $(X; * , 0)$ is a Coxeter algebra if and only if it is a *BM*-algebra with $0 * x =$ x for all $x \in X$ [4].

Proof. Corollary 2.10 has been proved in [4].

The concept of derivation on *B*-algebra has been discussed in [6]. Let $(X;*,0)$ is a *B*-algebra, then $x \wedge y = y * (y * x)$, for all $x, y \in X$.

Definition 2.11 Let $(X;*,0)$ be a *B*-algebra [6]. A mapping of d from X to itself is called (l,)derivation of X if it satisfies $d(x * y) = (d(x) * y) \wedge (x * d(y))$ for all $x, y \in X$ and we say that d is a $(r,$ -derivation of X if it satisfies $d(x * y) = (x * d(y)) \wedge (d(x) * y)$ for all $x, y \in X$. Moreover, if d is both an (l) -derivation and an (r) -derivation, we say that d is a derivation of X.

Let $(X;*,0)$ is a *B*-algebra. A mapping of d from X to itself is called regular if it satisfies $d(0) = 0.$

Definition 2.12 Let $(X; * , 0)$ be a *BCI*-algebra [5]. By a left derivation of X, we mean a self-map d of *X* satisfying $d(x * y) = (x * d(y)) \wedge (y * d(x))$ for all $x, y \in X$.

A self-map fon a *B*-algebra $X = (X, * , 0)$ is called an endomorphism if $f(x * y) = f(x) *$ $f(y)$ for all $x, y \in X$. The self-map d_q^f on X is defined by $d_q^f(X) = f(x) * q$ for all $x, q \in X$.

Definition 2.13 Let f be an endomorphism of a *B*-algebra $X = (X; * , 0)$ [8]. A self-map d_a^f on X is called:

- 1) An inside f_q -derivation of *X* if $d_q^f(x*y) = d_q^f(x)*f(y)$ for all $x, y \in X$.
- 2) An outside f_q -derivation of *X* if $d_q^f(x*y) = f(x)*d_q^f(y)$ for all $x, y \in X$.

an f_q -derivation of *X* if it is both an outside and inside f_q -derivation of *X*.

3. RESULTS AND DISCUSSIONS

This section provides the study's preliminary results, namely defining left f_q -derivationon *B*algebra using the same method as defining left derivation on *BCI*-algebra. Then, the properties are given by the left *fq*-derivationon *B*-algebra and the properties of the*fq*-derivation composition on *BM*algebra.

Definition 3.1 Let $(X;*,0)$ be a *B*-algebra and f is endomorphism of X. A self-map d_a^f on X is called left f_q -derivation of *X* satisfying $d_q^f(x * y) = (f(x) * d_q^f(y)) \wedge (f(y) * d_q^f(x))$ for all $x, y \in X$.

Example 3.1 Let $(\mathbb{Z}; -0)$ be *B*-algebra. We define the mapping of f and d_a^f of \mathbb{Z} to itself with $f(x) = x$ and $d_a^f(x) = f(x) - q$ for all $x \in \mathbb{Z}$. It can easily be proven that f is an endomorphism of Z. It will be checked whether d_q^f is left f_q -derivation of Z. For all $x, y \in \mathbb{Z}$ is obtained d_q^f $f(x - y) - q = x - y - q$ and,

$$
(f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = (f(x) - (f(y) - q)) \wedge (f(y) - (f(x) - q))
$$

\n
$$
(f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = (x - y - q) \wedge (y - x + q)
$$

\n
$$
(f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = (y - x + q) - [(y - x + q) - (x - y - q)]
$$

\n
$$
(f(x) - d_q^f(y)) \wedge (f(y) - d_q^f(x)) = x - y - q
$$

So that it satisfies $d^f_a(x-y) = (f(x) - d^f_a(y)) \wedge (f(y) - d^f_a(x))$. Thus, it is proved that d^f_a is left f_a -derivation on \mathbb{Z} .

Let $(X;*,0)$ be a *B*-algebra. A mapping of d_a^f on X to itself is called regular if it satisfies $d_a^f(0) = 0.$

Theorem 3.2. Let $(X; * , 0)$ be a *B*-algebra and *f* is an endomorphism of X. If d_a^f is left f_q -derivation on *X,* then

- (i) $d_a^f(0) = f(x) * d_a^f(x)$ for all $x \in X$,
- (ii) d_0^f is regular.

Proof. Let $(X; * , 0)$ be a *B*-algebra and f is an endomorphism of X.

(i) Since d_q^f is left f_q -derivation on *X*, by the axiom *B1* and *B2* we get:

$$
d_q^f(0) = d_q^f(x * x)
$$

\n
$$
d_q^f(0) = (f(x) * d_q^f(x)) \wedge (f(x) * d_q^f(x))
$$

\n
$$
d_q^f(0) = (f(x) * d_q^f(x)) * [(f(x) * d_q^f(x)) * (f(x) * d_q^f(x))]
$$

\n
$$
d_q^f(0) = (f(x) * d_q^f(x)) * 0
$$

\n
$$
d_q^f(0) = f(x) * d_q^f(x)
$$

Hence, it is obtained that $d_{\alpha}^{f}(0) = f(x) * d_{\alpha}^{f}(x)$ for all $x \in X$.

(ii) By (1) and axiom *B1* we have:

$$
d_0^f(0) = f(x) * d_0^f(x)
$$

\n
$$
d_0^f(0) = f(x) * (f(x) * 0)
$$

\n
$$
d_0^f(0) = f(x) * f(x)
$$

\n
$$
d_0^f(0) = 0
$$

So, it is obtained that d_0^f is regular.

Theorem 3.3. Let $(X;*,0)$ be a *B*-algebra, f is an endomorphism of X and d_a^f is left f_q -derivation regular on *X*. d_a^f is the identity function if and only if f is the identity function.

Proof. Let d_g^f is left f_q -derivation regular on *X*. Since d_g^f is the identity function, then $d_g^f(x) = x$ for all $x \in X$. By theorem 3.2 (1), axiom *B1* and lemma 2.2 (v) we have:

$$
d_q^f(0) = 0
$$

$$
f(x) * d_q^f(x) = 0
$$

$$
f(x) * x = x * x
$$

$$
f(x) = x
$$

thus, it is proved that f is an identity function. Conversely, if f is an identity function, then $f(x) = x$ for all $x \in X$. By theorem 3.2 (1), axiom *B1* and lemma 2.2 (v), we have:

$$
d_q^f(0) = 0
$$

$$
f(x) * d_q^f(x) = 0
$$

$$
x * d_q^f(x) = d_q^f(x) * d_q^f(x)
$$

$$
x = d_q^f(x)
$$

so, it is proved that d_a^f is an identity function.

Theorem 3.4 Let $(X; * , 0)$ be a *B*-algebra, f is an endomorphism of X and d_a^f is left f_q -derivation on X. d_q^f regular if and only if $f = d_q^f$.

Proof. Let d_a^f is regular on *X*. By theorem 3.2 (1), axiom *B1* and lemma 2.2 (v) for all $x \in X$ are obtained:

$$
d_q^f(0) = 0
$$

$$
f(x) * d_q^f(x) = d_q^f(x) * d_q^f(x)
$$

$$
f(x) = d_q^f(x)
$$

thus, it is proved that $f = d_a^f$. Conversely, suppose $f = d_a^f$. Based on theorem 3.2 (i) and the axiom *B1* is obtained:

$$
d_q^f(0) = f(x) * d_q^f(x)
$$

= $f(x) * f(x)$

$$
d_q^f(0) = 0.
$$

so, it is proved that d_a^f is regular on X.

BM-algebra is a particular form of *B*-algebra, so the definition of inside and outside f_q derivation on *BM*-algebra is the same as on *B*-algebra. The concept of left *fq*-derivation on *BM*-algebra will not be discussed further because on *BM*-algebra $(X,*,0)$ it applies $x \wedge y = y * (y * x) = x$ for all $x, y \in X$. Therefore, the concept of left f_q -derivation on *BM*-algebra is the same as outside f_q -derivation on *BM*-algebra.

Definition 3.5 Let $(X;*,0)$ be a *B*-algebra, f is an endomorphism of X, d_a^f and D_a^f are mappings from X to itself. $d_a^f \circ D_a^f$: $X \to X$ is defined as $d_a^f \circ D_a^f(x) = d_a^f(D_a^f(x))$ for all

Here are given the properties derived from the concept of composition *fq*-derivation on *BM*algebra.

Theorem 3.6 If $(X;*,0)$ be a *BM*-algebra and *f* is the identity endomorphism of *X*, then $d_0^f \circ D_0^f$ is f_q derivation of *X.*

Proof. We show that $d_0^f \circ D_0^f$ is inside f_q -derivation as well outside f_q -derivation on *X*. By axioms (A1) on *BM*-algebra for each $x \in X$ obtained:

$$
(d_0^f \circ D_0^f)(x) = d_0^f (D_0^f(x))
$$

\n
$$
(d_0^f \circ D_0^f)(x) = d_0^f (f(x) * 0)
$$

\n
$$
(d_0^f \circ D_0^f)(x) = d_0^f (f(x))
$$

\n
$$
(d_0^f \circ D_0^f)(x) = d_0^f(x)
$$

\n
$$
(d_0^f \circ D_0^f)(x) = f(x) * 0
$$

\n
$$
(d_0^f \circ D_0^f)(x) = f(x)
$$

so that

$$
(d_0^f \circ D_0^f)(x * y) = f(x * y) * 0
$$

\n
$$
(d_0^f \circ D_0^f)(x * y) = f(x * y)
$$

\n
$$
(d_0^f \circ D_0^f)(x * y) = f(x) * f(y)
$$

\n
$$
(d_0^f \circ D_0^f)(x * y) = (d_0^f \circ D_0^f)(x) * f(y)
$$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is the inside f_q -derivation on *X*. Then, also from the axiom (*A1*) on *BM*-algebra, we get:

$$
(d_0^f \circ D_0^f)(x * y) = f(x * y) * 0
$$

\n
$$
(d_0^f \circ D_0^f)(x * y) = f(x * y)
$$

\n
$$
(d_0^f \circ D_0^f)(x * y) = f(x) * f(y)
$$

\n
$$
(d_0^f \circ D_0^f)(x * y) = f(x) * (d_0^f \circ D_0^f)(y)
$$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is outside f_q -derivation on X. It is therefore proven that $d_0^f \circ D_0^f$ is f_q -derivation on *X*.

Theorem 3.7 Let $(X;*,0)$ be a *BM*-algebra and *f* is the identity endomorphism of *X*.

- (i) If d_g^f and D_g^f are inside f_q -derivation on *X*, then $d_g^f \circ D_g^f$ is inside f_q -derivation on *X*
- (ii) If d^f_a and D^f_a are outside f_q -derivation on *X*, then $d^f_a \circ D^f_a$ is outside f_q -derivation on *X*

Proof. Let $(X; * , 0)$ be a *BM*-algebra and *f* is the identity endomorphism of *X*

(i) Since d_q^f and D_q^f are inside f_q -derivation on *X*, we have:

$$
(d_q^f \circ D_q^f)(x * y) = d_q^f(D_q^f(x * y))
$$

= $d_q^f(D_q^f(x) * f(y))$
= $d_q^f(D_q^f(x)) * f(f(y))$
 $(d_q^f \circ D_q^f)(x * y) = (d_q^f \circ D_q^f)(x) * f(y),$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is inside f_q -derivation of X.

(ii) Since d_q^f and D_q^f are outside f_q -derivation on *X*, we have:

$$
(d_q^f \circ D_q^f)(x * y) = d_q^f(D_q^f(x * y))
$$

= $d_q^f(f(x) * D_q^f(y))$
= $f(f(x)) * d_q^f(D_q^f(y))$
 $(d_q^f \circ D_q^f)(x * y) = f(x) * (d_q^f \circ D_q^f)(y),$

for all $x, y \in X$. Thus, it is proved that $d_0^f \circ D_0^f$ is outside f_q -derivation of X.

Corollary 3.8 Let $(X; * , 0)$ be a *BM*-algebra, and *f* is the identity endomorphism of *X*. If d_a^f and D_a^f are f_q -derivation on *X*, then $d_q^f \circ D_q^f$ is f_q -derivation on *X*.

Proof. The corollary of 3.8 is immediately evident based on theorem 3.7 (i) and (ii).

Theorem 3.9 Let $(X;*,0)$ be a *BM*-algebra satisfying $x * y = y * x$ for all $x, y \in X$. *f* is the identity endomorphism of *X*, d_g^f and D_g^f are f_g -derivation on *X*. If $d_g^f \circ f = f \circ d_g^f$ and $D_g^f \circ f = f \circ D_g^f$, then $d_a^f \circ D_a^f = D_a^f \circ d_a^f$.

Proof. Since d^f_a and D^f_a are f_q -derivation on *X* and $d^f_a \circ f = f \circ d^f_a$, $D^f_a \circ f = f \circ D^f_a$ then,

$$
(d_q^f \circ D_q^f)(x * y) = d_q^f(D_q^f(x * y))
$$

\n
$$
(d_q^f \circ D_q^f)(x * y) = d_q^f(D_q^f(x) * f(y))
$$

\n
$$
(d_q^f \circ D_q^f)(x * y) = d_q^f(f(y) * D_q^f(x))
$$

\n
$$
(d_q^f \circ D_q^f)(x * y) = d_q^f(f(y)) * f(D_q^f(x))
$$

\n
$$
(d_q^f \circ D_q^f)(x * y) = (d_q^f \circ f)(y) * (f \circ D_q^f)(x)
$$

\n
$$
(d_q^f \circ D_q^f)(x * y) = (f \circ d_q^f)(y) * (D_q^f \circ f)(x)
$$

for all $x, y \in X$. On the other is obtained:

$$
(D_q^f \circ d_q^f)(x * y) = D_q^f(d_q^f(x * y))
$$

\n
$$
(D_q^f \circ d_q^f)(x * y) = D_q^f(f(x) * d_q^f(y))
$$

$$
(D_q^f \circ d_q^f)(x * y) = D_q^f(f(x)) * f(d_q^f(y))
$$

\n
$$
(D_q^f \circ d_q^f)(x * y) = (D_q^f \circ f)(x) * (f \circ d_q^f)(y)
$$

\n
$$
(D_q^f \circ d_q^f)(x * y) = (f \circ d_q^f)(y) * (D_q^f \circ f)(x)
$$

for all $x, y \in X$. So, it is proved that $d_a^f \circ D_a^f = D_a^f \circ d_a^f$.

4. CONCLUSION

In this article, it can be concluded that the properties of left f_q -derivation are obtained in *B*algebra. However, most of the properties are accepted for a regular left*fq*-derivation. Then, the concept of left f_q -derivation on *BM*-algebra is not discussed in depth because it is equivalent to outside f_q derivation on *BM*-algebra. Thecomposition of *fq*-derivation properties on *BM*-algebra is only obtained if *f* is an identity endomorphism on *BM*-algebra.

REFERENCES

- [1] Neggers, J. & Sik, K. H. (2002). On B-algebras. *Matematički Vesnik*, **54**(1-2), 21–29.
- [2] Kim, C. B. & Kim, H. S. (2008). On BG-algebras. *Demonstratio Mathematica*, **41**(3), 497–506.
- [3] Kim, H. S. & Park, H. G. (2005). On 0-commutative B-algebras. *Sci. Math. Japonicae*, **62**(1), 7.
- [4] Kim, C. B. & Kim, H. S. (2006). On BM-algebras. *Scientiae Mathematicae Japonicae*, **63**(3).
- [5] Wu, G. & Kim, Y. H. (2018). Pregroups and pre-B-algebras. *J. Appl. Math. Inform.*, **36**, 51–57.
- [6] Deng, F. A., Ren, S., & Zheng, P. (2021). N(2,2,0) Algebras and related topic. *J. Math. Res.*, **13**.
- [7] Yattaqi, E., Gemawati, S., & Hasbiyati, I. (2021). fq-derivasi di BM-aljabar. *Jambura J. Math.*, **3**(2), 155-166.
- [8] Ramadhona, C. & Gemawati, S. (2020). Generalized f-derivation of BP-algebras. *IJMTT*, **66**.
- [9] Sugianti, K. & Gemawati, S. (2020). Generalized derivations of BM-algebras. *Int. J. Contemp. Math. Sci*, **15**(4), 225–233.
- [10] Partala, J. (2018). Algebraic generalization of Diffie–Hellman key exchange. *J. Math. Cryptol.*, **12**(1), 1–21.
- [11] Brady, R. (2021). Arithmetic formulated in a logic of meaning containment. *The Australasian Journal of Logic*, **18**(5), 447–472.
- [12] Atteya, M. J. (2019). New types of permuting n-derivations with their applications on associative rings. *Symmetry*, **12**(1), 46.
- [13] Chen, L. & Fritz, T. (2021). An algebraic approach to physical fields. *Stud. Hist. Philos. Sci. A*, **89**, 188–201.
- [14] Abujabal, H. A. & Al-Shehri, N. O. (2007). On left derivations of BCI-algebras. *Soochow Journal of Mathematics*, **33**(3), 435.
- [15] Alshehri, N. (2010). Derivations of B-algebras. *Science*, **22**(1).
- [16] Al-Kadi, D. (2016). fq -derivations of G -algebra. *Int. J. Math. Math. Sci.*, 1–5.
- [17] Muangkarn, P., Suanoom, C., Pengyim, P., & Iampan, A. (2021). fq-Derivations of B-algebras. *J. Math. Comput. Sci.*, **11**(2), 2047–2057.
- [18] Kim, H. S., Kim, Y. H., & Neggers, J. (2004). Coxeter algebras and pre-Coxeter algebras in Smarandache setting. *Honam Mathematical Journal*, **26**(4), 471–481.
- [19] Ashraf, M., Ali, S., & Haetinger, C. (2006). On derivations in rings and their applications. *Aligarh Bull. Math*, **25**(2), 79–107.
- [20] Afriastuti, S., Gemawati, S., & Syamsudhuha, S. (2021). On (f, g)-derivation in BCH-algebra. *Science, Technology and Communication Journal*, **1**(3).
- [21] Siswanti, T. F., Gemawati, S., & Syamsudhuha, S. (2021). t-derivations in BP-algebras. *Science, Technology and Communication Journal*, **1**(3).
- [22] Zhang, X., Borzooei, R. A., & Jun, Y. B. (2018). Q-filters of quantum B-algebras and basic implication algebras. *Symmetry*, *10*(11), 573.
- [23] Xin, X., Fu, Y., Lai, Y., & Wang, J. (2019). Monadic pseudo BCI-algebras and corresponding logics. *Soft Computing*, **23**, 1499–1510.
- [24] Rezaei, A., Saeid, A. B., & Saber, K. Y. S. (2019). On pseudo-CI algebras. *Soft Computing*, **23**.
- [25] Naraghi, H., & Taherkhani, B. (2016). On falling fuzzy ideals in BCI-algebra. *AFMI*, **11**(2).

Science, Technology and Communication Journal, 2(1), 1-8, October 2021