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1. INTRODUCTION 

Neggers and Kim [1] introduce the notion of B-algebra, which is a non empty set 𝑋 with a 

constant 0 and a binary operation “∗” donated by (𝑋; ∗, 0), satisfying the following axioms (𝐵1) 

𝑥 ∗ 𝑥 = 0, (𝐵2) 𝑥 ∗ 0 = 𝑥, and  (𝐵3)  𝑥 ∗ 𝑦 ∗ 𝑧 = 𝑥 ∗ (𝑧 ∗  0 ∗ 𝑦 ) for all  𝑥, 𝑦, 𝑧 ∈ 𝑋. Then, Kim and 

Kim [2] introduce the notion of BG-algebra which is the generalization of B-algebra satisfying the 

following axioms (B1), (B2), and (𝐵𝐺)  𝑥 ∗ 𝑦 ∗ (0 ∗ 𝑦) = 𝑥 for all 𝑥, 𝑦 ∈ 𝑋. Kim and Park [3] 

introduce 0-commutative B-algebra satisfying the following axioms 𝑥 ∗  0 ∗ 𝑦 = 𝑦 ∗ (0 ∗ 𝑥) for all 

𝑥, 𝑦 ∈ 𝑋. Kim and Kim [4] also introduce BM-algebra, which is a specialization of B-algebra, 

satisfying the following axioms (B2) and (A2)  𝑧 ∗ 𝑥 ∗ (𝑧 ∗ 𝑥) = 𝑦 ∗ 𝑥 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. The 

relationship between B-algebra and BM-algebra is that every BM-algebra is B-algebra and every 0-

commutative B-algebra is BM-algebra. 

The first time, the notion of derivation is discussed in ring and near ring. In thedevelopment of 

abstract algebra, the notion of derivation is also discussed in otheralgebraic structures. Abujabal and 

Al-Shehrie [5] introduce the left derivation on BCI-algebra, and then Al-Shehrie [6] introduces the 

derivation of B-algebra. The results define a left-right or (𝑙,𝑟)-derivation, a right-left or(𝑟,𝑙)-derivation, 

and a regular in B-algebra.Then, also obtained the properties of the derivation on B-algebra. The 

concept offq -derivation is another type of derivation, as discussed by Al-Kadi [7] regarding fq-

derivation on G-algebra. Furthermore, Muangkarn et al. [8] discussed the concept of fq-derivation on 

B-algebra by defining a mapping involving endomorphisms. However, the article has not discussed the 

properties of left fq-derivation of B-algebra. 

This article defines the concept of leftfq-derivation on B-algebra so that its properties are 

obtained. Then, we discuss the properties of theregular leftfq-derivation and the fq-derivation 

composition properties of BM-algebra. 

https://creativecommons.org/licenses/by/4.0/
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2. PRELIMINERIES 

In this section, some definitions are needed to construct the research's primary results, with 

definitions and theories about B-algebra and BM-algebra. Then, given the left derivation concept of 

BCI-algebra and fq-derivation of B-algebra, which have been discussed in [1, 3-6, 8-12]. 

 

Definition 2.1. A B-algebra is a non-empty set X with a constant 0 and a binary operation “∗” 

satisfying the following axioms [1]:  

(B1) 𝑥 ∗ 𝑥 = 0, 

(B2) 𝑥 ∗ 0 = 𝑥, 

(B3) (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑧 ∗ (0 ∗ 𝑦)), 

for all 𝑥, 𝑦 ∈ 𝑋. 

 

Example 2.1. Let X = {0, 1, 2, 3, 4, 5} be a set with Cayley’s table as seen in Table 1. 

Table 1. Cayley’s table for (𝑋;∗ ,0) 

∗ 0 1 2 3 4 5 

0 0 2 1 3 4 5 

1 1 0 2 4 5 3 

2 2 1 0 5 3 4 

3 3 4 5 0 2 1 

4 4 5 3 1 0 2 

5 5 3 4 2 1 0 

It can be seen in Table 1 that the main diagonal is 0, so it applies 𝑥 ∗ 𝑥 = 0 (B1) and the value 

in the second column represents the result of the binary operation, which is itself so that it satisfies 

𝑥 ∗ 0 = 𝑥 (B2). Then, suppose 𝑥, 𝑦 ∈ 𝑋, from Table 1 it can be proved that (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑧 ∗ (0 ∗
𝑦)) (B3). So, (𝑋;∗ ,0) is a B-algebra. 

 

Lemma 2.2. If (𝑋;∗ ,0)  is a B-aljabar [1], then 

(i) 0 ∗ (0 ∗ 𝑥) = 𝑥, 

(ii) (𝑥 ∗ 𝑦) ∗ (0 ∗ 𝑦) = 𝑥, 

(iii) 𝑦 ∗ 𝑧 = 𝑦 ∗ (0 ∗ (0 ∗ 𝑧)), 

(iv) 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ (0 ∗ 𝑧)) ∗ 𝑦, 

(v) 𝑥 ∗ 𝑧 = 𝑦 ∗ 𝑧 implies 𝑥 = 𝑦,  

(vi) 𝑥 ∗ 𝑦 = 0 implies 𝑥 = 𝑦, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Proof : Lemma 2.2 has been proved in [1]. 

 

Definition 2.3. A B-algebra (𝑋;∗ ,0) is a 0-commutative B-algebra if it satisfies 𝑥 ∗ (0 ∗ 𝑦) = 𝑦 ∗ (0 ∗
𝑥) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 [3]. 

 

Definition 2.4. A BM-algebra is a non-empty set X with a constant 0 and a binary operation “∗” 

satisfying the following axioms [4]: 

(A1) 0 ∗ 𝑥 = 𝑥, 

(A2) (𝑧 ∗ 𝑥) ∗ (𝑧 ∗ 𝑦) = 𝑦 ∗ 𝑥, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Example 2.2. Let X = {0, 1, 2} be a set with Cayley’s table as seen in Table 2. 

Tabel 2. Tabel Cayley for (𝑋;∗ ,0) 

∗ 0 1 2 

0 0 2 1 

1 1 0 2 

2 2 1 0 
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It can be seen in Table 2 the value in the second column represents the result of the binary 

operation, which is itself so that it satisfies 𝑥 ∗ 0 = 𝑥 (A1). Then, suppose 𝑥, 𝑦, 𝑧 ∈ 𝑋, from Table 2 it 

can be proved that (𝑧 ∗ 𝑥) ∗ (𝑧 ∗ 𝑦) = 𝑦 ∗ 𝑥 (A2). So, (𝑋;∗ ,0) is a BM-algebra.  

 

Lemma 2.5. If (𝑋;∗ ,0) is a BM-aljabar [4], then 

(i) 𝑥 ∗ 𝑥 = 0, 

(ii) 0 ∗ (0 ∗ 𝑥) = 𝑥,  

(iii) 0 ∗ (𝑥 ∗ 𝑦) = 𝑦 ∗ 𝑥, 

(iv) (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) = 𝑥 ∗ 𝑦, 

(v) 𝑥 ∗ 𝑦 = 0 if only if 𝑦 ∗ 𝑥 = 0, 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Proof. Lemma 2.5 has been proved in [4]. 

 

Theorem 2.6 Every BM-algebra is a B-algebra [4]. 

 

Proof. Theorem 2.6 has been proved in [4]. 

The converse of Theorem 2.6 does not hold in general. As in example 2.1 (𝑋;∗ ,0) is a B-

algebra but not BM-algebra since (5∗1)∗(5∗4) = 4≠5 = 4∗1. 

 

Theorem 2.7 If (𝑋;∗ ,0) is a BM-aljabar [4], then (𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ 𝑦 for all 𝑥, 𝑦 ∈ 𝑋. 

 

Proof. Theorem 2.7 has been proved in [4]. 

 

Definition 2.8 A Coxeter algebra is a non-empty set X with a constant 0 and a binary operation “∗” 

satisfying the following axioms [9]: 

(C1) 𝑥 ∗ 𝑥 = 0, 

(C2) 𝑥 ∗ 0 = 𝑥, 

(C3) (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧), 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Theorem 2.9 If (𝑋;∗ ,0)  is a BM-algebra with 0 ∗ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 [4], then (𝑋;∗ ,0)  is Coxeter 

algebra. 

 

Proof. Theorem 2.9 has been proved in [4]. 

 

Corollary 2.10 An algebra (𝑋;∗ ,0) is a Coxeter algebra if and only if it is a BM-algebra with 0 ∗ 𝑥 =
𝑥 for all 𝑥 ∈ 𝑋 [4]. 

 

Proof. Corollary 2.10 has been proved in [4]. 

The concept of derivation on B-algebra has been discussed in [6]. Let (𝑋;∗ ,0) is a B-algebra, 

then 𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥), for all 𝑥, 𝑦 ∈ 𝑋. 

 

Definition 2.11 Let (𝑋;∗ ,0) be a B-algebra [6]. A mapping of 𝑑 from 𝑋 to itself is called (𝑙,𝑟)-

derivation of 𝑋 if it satisfies 𝑑(𝑥 ∗ 𝑦) = (𝑑(𝑥) ∗ 𝑦) ∧ (𝑥 ∗ 𝑑(𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 and we say that 𝑑 is a 

(𝑟,𝑙)-derivation of 𝑋 if it satisfies 𝑑(𝑥 ∗ 𝑦) = (𝑥 ∗ 𝑑(𝑦)) ∧ (𝑑(𝑥) ∗ 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Moreover, if 𝑑 

is both an (𝑙,𝑟)-derivation and an (𝑟,𝑙)-derivation, we say that 𝑑 is a derivation of 𝑋. 

Let (𝑋;∗ ,0) is a B-algebra. A mapping of 𝑑 from 𝑋 to itself is called regular if it satisfies 

𝑑 0 = 0. 

 

Definition 2.12 Let (𝑋;∗ ,0) be a BCI-algebra [5]. By a left derivation of X, we mean a self-map 𝑑 of 

X satisfying 𝑑(𝑥 ∗ 𝑦) = (𝑥 ∗ 𝑑(𝑦)) ∧ (𝑦 ∗ 𝑑(𝑥))  for all 𝑥, 𝑦 ∈ 𝑋. 

A self-map 𝑓on a B-algebra 𝑋 = (𝑋;∗ ,0) is called an endomorphism if 𝑓 𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗ 𝑓(𝑦) 

for all 𝑥, 𝑦 ∈ 𝑋. The self-map 𝑑𝑞
𝑓
 on X  is defined by 𝑑𝑞

𝑓
(𝑋) = 𝑓 𝑥 ∗ 𝑞 for all 𝑥, 𝑞 ∈ 𝑋.  
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Definition 2.13 Let 𝑓be an endomorphism of a B-algebra 𝑋 = (𝑋;∗ ,0) [8]. A self-map 𝑑𝑞
𝑓
on X is 

called 

1) An inside fq-derivation of X if 𝑑𝑞
𝑓
(𝑥∗𝑦) = 𝑑𝑞

𝑓
(𝑥) ∗𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

2) An outsidefq-derivation of X if 𝑑𝑞
𝑓
(𝑥∗𝑦) = 𝑓(𝑥)∗𝑑𝑞

𝑓
(𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

3) An fq-derivation of X if it is both an outside and inside fq-derivation of 𝑋. 

3. RESULTS AND DISCUSSIONS 

This section provides the study's preliminary results, namely defining left fq-derivationon B-

algebra using the same method as defining left derivation on BCI-algebra. Then, the properties are 

given by the left fq-derivationon B-algebra and the properties of thefq-derivation composition on BM-

algebra. 

 

Definition 3.1 Let (𝑋;∗ ,0) be a B-algebra and 𝑓 is endomorphism of X. A self-map 𝑑𝑞
𝑓
 on X is called 

left fq-derivation of X satisfying 𝑑𝑞
𝑓

(𝑥 ∗ 𝑦) = (𝑓(𝑥) ∗ 𝑑𝑞
𝑓

(𝑦)) ∧ (𝑓(𝑦) ∗ 𝑑𝑞
𝑓

(𝑥)) for all 𝑥, 𝑦 ∈ 𝑋. 

 

Example 3.1 Let  ℤ;−,0  be B-algebra. We define the mapping of 𝑓 and 𝑑𝑞
𝑓
 of ℤ to itself with 

𝑓 𝑥 = 𝑥 and  𝑑𝑞
𝑓 𝑥 = 𝑓(𝑥) − 𝑞 for all 𝑥 ∈ ℤ. It can easily be proven that f is an endomorphism of 

ℤ. It will be checked whether 𝑑𝑞
𝑓

 is left fq-derivation of ℤ. For all 𝑥, 𝑦 ∈ ℤ is obtained 𝑑𝑞
𝑓 𝑥 − 𝑦 =

𝑓 𝑥 − 𝑦 − 𝑞 = 𝑥 − 𝑦 − 𝑞 and, 

(𝑓 𝑥 − 𝑑𝑞
𝑓

(𝑦)) ∧ (𝑓 𝑦 − 𝑑𝑞
𝑓

(𝑥)) = (𝑓 𝑥 − (𝑓 𝑦 − 𝑞)) ∧ (𝑓 𝑦 − (𝑓 𝑥 − 𝑞))  

 (𝑓 𝑥 − 𝑑𝑞
𝑓

(𝑦)) ∧ (𝑓 𝑦 − 𝑑𝑞
𝑓

(𝑥)) = (𝑥 − 𝑦 − 𝑞) ∧ (𝑦 − 𝑥 + 𝑞) 

 (𝑓 𝑥 − 𝑑𝑞
𝑓

(𝑦)) ∧ (𝑓 𝑦 − 𝑑𝑞
𝑓

(𝑥)) =  𝑦 − 𝑥 + 𝑞 − [ 𝑦 − 𝑥 + 𝑞 −  𝑥 − 𝑦 − 𝑞 ] 

 (𝑓 𝑥 − 𝑑𝑞
𝑓

(𝑦)) ∧ (𝑓 𝑦 − 𝑑𝑞
𝑓

(𝑥)) = 𝑥 − 𝑦 − 𝑞  

So that it satisfies 𝑑𝑞
𝑓 𝑥 − 𝑦 = (𝑓 𝑥 − 𝑑𝑞

𝑓
(𝑦)) ∧ (𝑓 𝑦 − 𝑑𝑞

𝑓
(𝑥)). Thus, it is proved that 𝑑𝑞

𝑓
 is 

left fq-derivation on ℤ. 

Let (𝑋;∗ ,0) be a B-algebra. A mapping of 𝑑𝑞
𝑓
 on 𝑋 to itself is called regular if it satisfies 

𝑑𝑞
𝑓 0 = 0. 

 

Theorem 3.2. Let (𝑋;∗ ,0) be a B-algebra and f is an endomorphism of 𝑋. If 𝑑𝑞
𝑓
 is left fq-derivation on 

X, then 

(i) 𝑑𝑞
𝑓 0 = 𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑥  for all 𝑥 ∈ 𝑋, 

(ii) 𝑑0
𝑓
 is regular. 

 

Proof. Let (𝑋;∗ ,0) be a B-algebra and 𝑓 is an endomorphism of 𝑋. 

(i) Since 𝑑𝑞
𝑓
 is left fq-derivation on X, by the axiom B1 and B2 we get: 

 𝑑𝑞
𝑓 0 = 𝑑𝑞

𝑓 𝑥 ∗ 𝑥  

 𝑑𝑞
𝑓 0 = (𝑓(𝑥) ∗ 𝑑𝑞

𝑓
(𝑥)) ∧ (𝑓(𝑥) ∗ 𝑑𝑞

𝑓
(𝑥)) 

 𝑑𝑞
𝑓 0 =  𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑥  ∗ [ 𝑓 𝑥 ∗ 𝑑𝑞
𝑓 𝑥  ∗ (𝑓(𝑥) ∗ 𝑑𝑞

𝑓
(𝑥))] 

 𝑑𝑞
𝑓 0 =  𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑥  ∗ 0 

 𝑑𝑞
𝑓 0 = 𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑥    

Hence, it is obtained that 𝑑𝑞
𝑓 0 = 𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑥  for all 𝑥 ∈ 𝑋. 
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(ii) By (1) and axiom B1 we have: 

 𝑑0
𝑓 0 = 𝑓 𝑥 ∗ 𝑑0

𝑓
(𝑥)  

 𝑑0
𝑓 0 = 𝑓 𝑥 ∗ (𝑓 𝑥 ∗ 0) 

 𝑑0
𝑓 0 = 𝑓 𝑥 ∗ 𝑓(𝑥) 

 𝑑0
𝑓 0 = 0  

So, it is obtained that 𝑑0
𝑓
 is regular. 

 

Theorem 3.3. Let (𝑋;∗ ,0) be a B-algebra, 𝑓 is an endomorphism of 𝑋 and 𝑑𝑞
𝑓
 is left fq-derivation 

regular on X. 𝑑𝑞
𝑓
 is the identity function if and only if 𝑓 is the identity function. 

 

Proof. Let 𝑑𝑞
𝑓
 is left fq-derivation regular on X. Since 𝑑𝑞

𝑓
 is the identity function, then 𝑑𝑞

𝑓 𝑥 = 𝑥 for 

all 𝑥 ∈ 𝑋. By theorem 3.2 (1), axiom B1 and lemma 2.2 (v) we have: 

𝑑𝑞
𝑓 0 = 0 

𝑓 𝑥 ∗ 𝑑𝑞
𝑓 𝑥 = 0 

𝑓(𝑥) ∗ 𝑥 =  𝑥 ∗ 𝑥 
𝑓(𝑥) =  𝑥 

thus, it is proved that 𝑓 is an identity function. Conversely, if 𝑓 is an identity function, then 𝑓 𝑥 = 𝑥 

for all𝑥 ∈ 𝑋. By theorem 3.2 (1), axiom B1 and lemma 2.2 (v), we have: 

𝑑𝑞
𝑓 0 = 0 

𝑓 𝑥 ∗ 𝑑𝑞
𝑓 𝑥 = 0 

𝑥 ∗ 𝑑𝑞
𝑓 𝑥 =  𝑑𝑞

𝑓 𝑥 ∗ 𝑑𝑞
𝑓

(𝑥) 

𝑥 =  𝑑𝑞
𝑓

(𝑥) 

so, it is proved that 𝑑𝑞
𝑓
 is an identity function. 

 

Theorem 3.4 Let (𝑋;∗ ,0) be a B-algebra, 𝑓 is an endomorphism of 𝑋 and 𝑑𝑞
𝑓
 is left fq-derivation on X. 

𝑑𝑞
𝑓
regular if and only if 𝑓 = 𝑑𝑞

𝑓
. 

 

Proof. Let 𝑑𝑞
𝑓
 is regular on X. By theorem 3.2 (1), axiom B1 and lemma 2.2 (v) for all 𝑥 ∈ 𝑋 are 

obtained: 

𝑑𝑞
𝑓 0 = 0 

𝑓(𝑥) ∗ 𝑑𝑞
𝑓 𝑥 =  𝑑𝑞

𝑓 𝑥 ∗ 𝑑𝑞
𝑓

(𝑥) 

𝑓(𝑥) =  𝑑𝑞
𝑓

(𝑥) 

thus, it is proved that 𝑓 = 𝑑𝑞
𝑓
. Conversely, suppose 𝑓 = 𝑑𝑞

𝑓
. Based on theorem 3.2 (i) and the axiom 

B1 is obtained: 

𝑑𝑞
𝑓 0 = 𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑥  

= 𝑓 𝑥 ∗ 𝑓 𝑥  

𝑑𝑞
𝑓 0 = 0.   
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so, it is proved that 𝑑𝑞
𝑓
is regular on X. 

BM-algebra is a particular form of B-algebra, so the definition of inside and outside fq -

derivation on BM-algebra is the same as on B-algebra. The concept of left fq-derivation on BM-algebra 

will not be discussed further because on BM-algebra (𝑋;∗ ,0) it applies 𝑥 ∧ 𝑦 = 𝑦 ∗  𝑦 ∗ 𝑥 = 𝑥 for all 

𝑥, 𝑦 ∈ 𝑋. Therefore, the concept of left fq-derivation on BM-algebra is the same as outside fq-derivation 

on BM-algebra. 

 

Definition 3.5 Let (𝑋;∗ ,0) be a B-algebra, 𝑓 is an endomorphism of 𝑋, 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are mappings from 

X to itself. 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
: 𝑋 → 𝑋 is defined as 𝑑𝑞

𝑓
∘ 𝐷𝑞

𝑓 𝑥 = 𝑑𝑞
𝑓

(𝐷𝑞
𝑓 𝑥 ) for all 𝑥 ∈ 𝑋. 

Here are given the properties derived from the concept of composition fq-derivation on BM-

algebra. 

 

Theorem 3.6 If (𝑋;∗ ,0) be a BM-algebra and f is the identity endomorphism of X, then 𝑑0
𝑓
∘ 𝐷0

𝑓
 is fq-

derivation of X. 

 

Proof. We show that 𝑑0
𝑓
∘ 𝐷0

𝑓
 is inside fq-derivation as well outside fq-derivation on X. By axioms (A1) 

on BM-algebra for each 𝑥 ∈ 𝑋 obtained: 

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 = 𝑑0

𝑓
 𝐷0

𝑓 𝑥   

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 = 𝑑0

𝑓 𝑓 𝑥 ∗ 0  

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 = 𝑑0

𝑓
(𝑓 𝑥 ) 

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 = 𝑑0

𝑓
(𝑥) 

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 = 𝑓 𝑥 ∗ 0 

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 = 𝑓 𝑥  

so that 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗ 𝑦 ∗ 0 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = 𝑓(𝑥 ∗ 𝑦) 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗ 𝑓(𝑦) 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = (𝑑0

𝑓
∘ 𝐷0

𝑓
) 𝑥 ∗ 𝑓 𝑦  

for all 𝑥, 𝑦 ∈ 𝑋. Thus, it is proved that 𝑑0
𝑓
∘ 𝐷0

𝑓
is the inside fq-derivation on X. Then, also from the 

axiom (A1) on BM-algebra, we get: 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗ 𝑦 ∗ 0 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = 𝑓(𝑥 ∗ 𝑦) 

 𝑑0
𝑓
∘ 𝐷0

𝑓
  𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗ 𝑓(𝑦) 

(𝑑0
𝑓
∘ 𝐷0

𝑓
) 𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗ (𝑑0

𝑓
∘ 𝐷0

𝑓
) 𝑦  

for all 𝑥, 𝑦 ∈ 𝑋. Thus, it is proved that 𝑑0
𝑓
∘ 𝐷0

𝑓
is outside fq-derivation on X. It is therefore proven that 

𝑑0
𝑓
∘ 𝐷0

𝑓
 is fq-derivation on X. 

 

Theorem 3.7 Let (𝑋;∗ ,0) be a BM-algebra and f is the identity endomorphism of X. 

(i) If 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are inside fq-derivation on X, then 𝑑𝑞

𝑓
∘ 𝐷𝑞

𝑓
 is inside fq-derivation on X 

(ii) If 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are outside fq-derivation on X, then 𝑑𝑞

𝑓
∘ 𝐷𝑞

𝑓
 is outside fq-derivation on X 

 

Proof. Let (𝑋;∗ ,0) be a BM-algebra and f is the identity endomorphism of X 
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(i) Since 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are inside fq-derivation on X, we have: 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑑𝑞

𝑓
(𝐷𝑞

𝑓 𝑥 ∗ 𝑦 )                             

= 𝑑𝑞
𝑓

(𝐷𝑞
𝑓 𝑥 ∗ 𝑓(𝑦))  

= 𝑑𝑞
𝑓

(𝐷𝑞
𝑓 𝑥 ) ∗ 𝑓(𝑓(𝑦))  

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 =  𝑑𝑞

𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑓 𝑦 ,    

for all 𝑥, 𝑦 ∈ X. Thus, it is proved that 𝑑0
𝑓
∘ 𝐷0

𝑓
 is inside fq-derivation of X. 

(ii) Since 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are outside fq-derivation on X, we have: 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑑𝑞

𝑓
(𝐷𝑞

𝑓 𝑥 ∗ 𝑦 )                             

= 𝑑𝑞
𝑓

(𝑓 𝑥 ∗ 𝐷𝑞
𝑓 𝑦 )  

= 𝑓 𝑓 𝑥  ∗ 𝑑𝑞
𝑓

(𝐷𝑞
𝑓 𝑦 )  

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑓 𝑥 ∗  𝑑𝑞

𝑓
∘ 𝐷𝑞

𝑓
  𝑦 ,    

for all 𝑥, 𝑦 ∈ X. Thus, it is proved that 𝑑0
𝑓
∘ 𝐷0

𝑓
 is outside fq-derivation of X. 

 

Corollary 3.8 Let (𝑋;∗ ,0) be a BM-algebra, and f is the identity endomorphism of X. If 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are 

fq-derivation on X, then 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
 is fq-derivation on X. 

 

Proof. The corollary of 3.8 is immediately evident based on theorem 3.7 (i) and (ii).  

 

Theorem 3.9 Let (𝑋;∗ ,0) be a BM-algebra satisfying 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 for all 𝑥, 𝑦 ∈ 𝑋. f is the identity 

endomorphism of X, 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
are fq-derivation on X. If 𝑑𝑞

𝑓
∘ 𝑓 = 𝑓 ∘ 𝑑𝑞

𝑓
 and 𝐷𝑞

𝑓
∘ 𝑓 = 𝑓 ∘ 𝐷𝑞

𝑓
, then 

𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
= 𝐷𝑞

𝑓
∘ 𝑑𝑞

𝑓
. 

 

Proof. Since 𝑑𝑞
𝑓
 and 𝐷𝑞

𝑓
 are fq-derivation on X and 𝑑𝑞

𝑓
∘ 𝑓 = 𝑓 ∘ 𝑑𝑞

𝑓
, 𝐷𝑞

𝑓
∘ 𝑓 = 𝑓 ∘ 𝐷𝑞

𝑓
 then, 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑑𝑞

𝑓
(𝐷𝑞

𝑓 𝑥 ∗ 𝑦 )                             

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑑𝑞

𝑓
(𝐷𝑞

𝑓 𝑥 ∗ 𝑓(𝑦)) 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑑𝑞

𝑓
(𝑓 𝑦 ∗ 𝐷𝑞

𝑓 𝑥 ) 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝑑𝑞

𝑓
(𝑓 𝑦 ) ∗ 𝑓(𝐷𝑞

𝑓 𝑥 ) 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = (𝑑𝑞

𝑓
∘ 𝑓)(𝑦) ∗ (𝑓 ∘ 𝐷𝑞

𝑓
)(𝑥) 

 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
  𝑥 ∗ 𝑦 = (𝑓 ∘ 𝑑𝑞

𝑓
)(𝑦) ∗ (𝐷𝑞

𝑓
∘ 𝑓)(𝑥) 

for all 𝑥, 𝑦 ∈ X. On the other is obtained: 

 𝐷𝑞
𝑓
∘ 𝑑𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝐷𝑞

𝑓
(𝑑𝑞

𝑓 𝑥 ∗ 𝑦 )  

 𝐷𝑞
𝑓
∘ 𝑑𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝐷𝑞

𝑓
(𝑓 𝑥 ∗ 𝑑𝑞

𝑓 𝑦 ) 

 𝐷𝑞
𝑓
∘ 𝑑𝑞

𝑓
  𝑥 ∗ 𝑦 = 𝐷𝑞

𝑓
(𝑓 𝑥 ) ∗ 𝑓(𝑑𝑞

𝑓 𝑦 ) 

 𝐷𝑞
𝑓
∘ 𝑑𝑞

𝑓
  𝑥 ∗ 𝑦 = (𝐷𝑞

𝑓
∘ 𝑓)(𝑥) ∗ (𝑓 ∘ 𝑑𝑞

𝑓
)(𝑦) 

 𝐷𝑞
𝑓
∘ 𝑑𝑞

𝑓
  𝑥 ∗ 𝑦 = (𝑓 ∘ 𝑑𝑞

𝑓
)(𝑦) ∗ (𝐷𝑞

𝑓
∘ 𝑓)(𝑥) 

for all 𝑥, 𝑦 ∈ X. So, it is proved that 𝑑𝑞
𝑓
∘ 𝐷𝑞

𝑓
= 𝐷𝑞

𝑓
∘ 𝑑𝑞

𝑓
. 
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4. CONCLUSION 

In this article, it can be concluded that the properties of left fq-derivation are obtained in B-

algebra. However, most of the properties are accepted for a regular leftfq-derivation. Then, the concept 

of left fq-derivation on BM-algebra is not discussed in depth because it is equivalent to outside fq-

derivation on BM-algebra. Thecomposition of fq-derivation properties on BM-algebra is only obtained 

if f is an identity endomorphism on BM-algebra. 
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