

Vol. 1, No. 3, June 2021, pp. 101-108, DOI: 10.59190/stc.vii3.199

t-derivations in BP-algebras

T. Fuja Siswanti, Sri Gemawati*, Syamsudhuha

Department of Mathematics, Universitas Riau, Pekanbaru 28293, Indonesia

ABSTRACT ARTICLE INFO

BP-algebras is a non-empty set (X, *, o) with the binary operation "*" satisfies the axioms (BP1) x * x = o, (BP2) x * (x * y) = y, (BP3) (x * z) * (y * z) = x * y for all $x, y, z \in X$. In this paper, we define the concept of (l, r) and (r, l) t-derivation in BP-algebra and investigate their properties. Based on the concepts of (l, r) and (r, l) t-derivation in BP-algebra, the properties of t-derivation in BP-algebra are constructed.

Article history:

Received Apr 30, 2021 Revised May 13, 2021 Accepted May 20, 2021

Keywords:

Axiom
BP-Algebra
(*l*, *r*) *t*-Derivation
(*r*, *l*) *t*-Derivation *t*-Derivation

This is an open access article under the <u>CC BY</u> license.

E-mail address: germawati.sri@gmail.com

1. INTRODUCTION

Algebraic structure is a fundamental topic, many researchers develop various types of algebraic structures are B-algebra, 0-commutative B-algebra, and BP-algebra. Neggers and Kim [1] introduced the concept of B-algebra, which is a non-empty set X with a binary operation "*" and a constant 0 denoted by (X; *, 0), and satisfies the axioms (B1) x * x = 0, (B2) x * 0 = x, and (B3) (x * y) * z = x * (z * (0 * y)) for all $x, y, z \in X$. Then, Kim and Park [2] discusses a special form of B-algebra called 0-commutative B-algebra, which is a non-empty set X with a binary operations X and a constant 0 that satisfies X * X *

Some important concepts in abstract algebra have been discussed, including the concept of derivation, which was first introduced in ring studies [3-9]. The concept of derivation is also discussed in other algebraic structures [10, 11], such as B-algebra. Besides in B-algebra, the concept of derivation is also found in BP-algebra and its properties which are discussed by Kandaraj and Devi [12, 13]. In this discussion, the properties of derivation and f-derivation in BP-algebra [10, 11, 14-17] are given which have differences with the properties of derivations in B-algebra [18-22]. In 2014, another concept of derivation was discussed, namely t-derivation in B-algebra [23], defining the concept of t-derivation in B-algebra resulting in a new type of derivation that is different from the concept of ordinary derivation [10, 11, 24]. The concept of t-derivation in B-algebra is obtained by defining (t,r)t-derivation, (r,t)t-derivation and t-regular in B-algebra. Besides that, the properties of the derivations in B-algebra are also obtained, which are expressed in the form of theorems.

Based on the description above, using the same way of constructing the concept of t-derivation in B-algebra by Rasoel et al. [23], namely by involving two mappings that can be constructed on the concept of t-derivation in BP-algebra and also determine the properties associated with the concept.

^{*} Corresponding Author

2. MATERIALS AND METHOD

In this section, the definitions of BP-algebra, B-algebra and 0-commutative B-algebra are defined, along with their properties.

2.1. Definition B-Algebra

B-algebra is a non-empty set X with the binary operation "*" and a constant 0 which satisfies the following axioms [25]:

(B1)
$$x * x = 0$$

(B2) $x * 0 = x$
(B3) $(x * y) * x = x * (z * (0 * y))$

for all $x, y, z \in X$.

2.1.1. Proposition

If (X, *, 0) is B-algebra, then:

```
i. (x * y) * (0 * y) = x,

ii. If x * y = z * y then x = z,

iii. x * (y * z) = (x * (0 * z)) * y,

iv. If x * y = 0 then x = y,

v. x = 0 * (0 * x),

vi. If x * y = x * z then y = z,

vii. 0 * (x * y) = y * x,

viii. (x * y) * (z * y) = x * z,
```

for all $x, y, z \in X$. The proof of this Proposition has been prove in [25].

2.2. Definition B-Algebra 0-Commutative

B-algebra (X, *, 0) is said to be 0-commutative if x * (0 * y) = y * (0 * x) for all $x, y \in X$.

2.2.1. Proposition

If (X,*,0) is 0-commutative B-algebra, then:

```
i. (x*z)*(y*w) = (w*z)*(y*x),

ii. (x*z)*(y*z) = x*y,

iii. (z*y)*(z*x) = x*y,

iv. (x*z)*y = (0*z)*(y*x),

v. x*(y*z) = z*(y*x),

vi. (x*y)*z = (x*z)*y,

vii. ((x*y)*(x*z))*(x*y) = 0,

viii. (x*(x*y))*y = 0,

ix. x*(x*y) = y,

x. If x*y = x*z, then y = z,
```

for all $w, x, y, z \in X$. The proof of this Proposition has been given in [25].

2.3. Definition BP-Algebra

BP-algebra is a non-empty set X with the binary operation "*" and a constant 0 which satisfies the following axiom [25]:

(BP1)
$$x * x = 0$$
,
(BP2) $x * (x * y) = y$,
(BP3) $(x * z) * (y * z) = x * y$,

for all $x, y, z \in X$.

Example, suppose $X := \{0, a, b, c\}$ is a set with the Cayley table as follows:

Table 1. Cayley's table for (X,*,0).

*	0	a	b	С
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

From Table 1, it can be proved that (X,*,0) satisfies all axioms in BP-algebra. So that (X,*,0) is BP-algebra.

2.3.1. Theorem

Suppose (X,*,0) is BP-algebra, then:

- i. (0 * x) * x) = x,
- ii. 0 * (y * x) = x * y,
- iii. x * 0 = x,
- iv. If x * y = 0 then y * x = 0,
- v. If 0 * x = 0 * y then x = y,
- vi. If 0 * x = y then 0 * y = x,
- vii. If 0 * x = x then x * y = y * x,

for all $x, y \in X$. The proof of this Theorem has been given in [25].

2.4. Definition 0-Commutative BP-Algebra

BP-algebra (X,*,0) is said to be 0-commutative if x*(0*y) = y*(0*x) for all $x,y \in X$.

2.4.1. Proposition

If (X,*,0) is 0-commutative BP-algebra, then:

i.
$$(x*z)*(y*z) = (x*y)*(z*x)$$
,

ii.
$$x * y = (0 * y) * (0 * x)$$
,

for all $x, y, z \in X$. The proof of this Proposition has been given in [25].

Example, given $G = \{0,1,2,3\}$ is a set with the Cayley table as follows:

Table 2. Cayley's table for (X,*,0).

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Based on Table 2, it can be proved that (G,*,0) satisfies all the axioms in BP-algebra. So that, (G,*,0) is BP-algebra and it can be verified that (G,*,0) is 0-commutative BP-algebra.

2.4.2. Theorem

If (X,*,0) is a 0-commutative B-algebra, then (X,*,0) is a BP-algebra. Proof of this Theorem has been given in [2]. Let (X,*,0) be a B-algebra, defined $x \land y = y * (y * x)$ for all $x,y \in X$.

2.5. Definition Derivation in B-Algebra

Let (X, *, 0) is a B-algebra and d is a self-map of X. d is said to be (l, r)-derivation in X, if it satisfies $d(x * y) = (d(x) * y) \land (x * d(y))$ for all $x, y \in X$, and d is said to be (r, l)-derivation in X if it satisfies $d(x * y) = ((x * d(y) \land d(x) * y))$ for all $x, y \in X$, and d is said to be derivation in X if it satisfies (l, r) and (r, l)-derivation in X.

2.6. Definition Regular in B-algebra

Let (X, *, 0) is a B-algebra and d is a self-map of X. d is called regular if it satisfies d(0) = 0.

3. RESULTS AND DISCUSSION

3.1. Definition 1

Let (X,*,0) is a BP-algebra, for any $t \in X$ we define a d_t mapping of X itself with $d_t(x) = x * t$ for each $x \in X$.

3.2. Definition 2

Let (X,*,0) be a BP-algebra and d_t is a self map of $X.d_t$ is said to be (l,r)t-derivation in X if it satisfies d_t $(x*y) = (d_t(x)*y) \land (x*d_t(y))$ for all $x,y \in X$ and d_t is called (r,l)t-derivation in X if it satisfies $d_t(x*y) = ((x*d_t(y) \land (d_t(x)*y))$ for all $x,y \in X$ and d_t is said to be t-derivation if it satisfies (l,r)t-derivation and (r,l)t-derivation.

Example, let $G := \{0,1,2,3\}$ is a BP-algebra with the following Cayley table in Table 3.

Table 3. Cayley's table for (G,*,0).

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

It can be verified that (G,*,0) is a BP-algebra. Then, based on the definition of 3.1 obtained

$$t = 0, d_t(x) = \begin{cases} 1, & x = 1 \\ 0, & x = 0 \\ 3, & x = 3 \\ 2, & x = 2 \end{cases}$$

$$t = 1, d_t(x) = \begin{cases} 1, & x = 0 \\ 0, & x = 1 \\ 3, & x = 2 \\ 2, & x = 3 \end{cases}$$

$$t = 2, d_t(x) = \begin{cases} 1, & x = 3 \\ 0, & x = 2 \\ 3, & x = 1 \\ 2, & x = 2 \end{cases}$$

$$t = 3, d_t(x) = \begin{cases} 1, & x = 2 \\ 0, & x = 3 \\ 3, & x = 0 \\ 2, & x = 1 \end{cases}$$

It can be shown that d_t is (l,r)t-derivation and (r,l)t-derivation in G, so that d_t is t-derivation in G.

3.2.1. Theorem 1

Let (X, *, 0) is a BP-algebra and d_t is the mapping of X to itself. If d_t is a (l, r)-t-derivation in X, then $d_t(x * y) = d_t(x) * y$ for all $x, y \in X$.

Proof,

Let (X, *, 0) is a BP-algebra. Since d_t is a (l, r)t-derivation in X and by axiom BP2 we get:

$$d_t(x * y) = (d_t(x) * y) \land (x * d_t(y))$$

$$d_t(x * y) = (x * d_t(y)) * (x * d_t(y)) * (d_t(x) * y)$$

$$d_t(x * y) = (d_t(x) * y)$$

hence, it is proved that $d_t(x * y) = d_t(x) * y$ for all $x, y \in X$.

The converse of Theorem 1 does hold, that is, if $d_t(x * y) = d_t(x) * y$ for all $x, y \in X$, by BP2 axiom we have:

$$d_t(x * y) = d_t(x) * y$$

$$d_t(x * y) = (x * d_t(y)) * (x * d_t(y)) * (d_t(x) * y)$$

$$d_t(x * y) = (d_t(x) * y)) \land (x * d_t(y))$$

thus, it is proved that d_t is a (l,r)t-derivation of X.

3.2.2. Theorem 2

Let (X, *, 0) is a BP-algebra and d_t is a mapping of X to itself. If d_t is a (r, l)t-derivation in X, then $d_t(x * y) = x * d_t(y)$ for all $x, y \in X$.

Proof,

Let (X, *, 0) is a BP-algebra. Since d_t is a (r, l)t-derivation in X, then by axiom BP2 we get:

$$d_t(x * y) = (x * d_t(y)) \land (d_t(x) * y)$$

$$d_t(x * y) = (d_t(x) * y) * ((d_t(x) * y) * (x * d_t(y))$$

$$d_t(x * y) = (x * d_t(y))$$

hence, it is proved that $d_t(x * y) = x * d_t(y)$ for all $x, y \in X$.

The converse of Theorem 2 does hold, that is, if $d_t(x * y) = x * d_t(y)$ for all $x, y \in X$, from the BP2 axiom is obtained:

$$d_t(x * y) = x * d_t(y)$$

$$d_t(x * y) = d_t(x) * y) * ((d_t(x) * y) * (x * d_t(y))$$

$$d_t(x * y) = (x * d_t(y)) \land (d_t(x) * y)$$

thus, it is proved that d_t is a (r, l)t-derivation in X.

3.2.3. Proposition 1

If (X,*,0) is an associative BP-algebra, then d_t is a (r,l)t-derivation in X.

Proof,

Let (X, *, 0) be an associative BP-algebra, then for all $x, y \in X$ we have:

$$d_t(x * y) = (x * y) * t$$

 $d_t(x * y) = x * (y * t)$
 $d_t(x * y) = x * d_t(y)$

from Theorem 2 it is proven that d_t is a (r, l)-t-derivation in X.

3.2.4. Proposition 2

Let (X,*,0) be a BP-algebra satisfying (x*y)*z = (x*z)*y for all $x,y,z \in X$, then d_t is a (l,r)t-derivation in X.

Proof,

Let (X, *, 0) is a BP-algebra that satisfies (x * y) * z = (x * z) * y for all $y, z \in X$, then:

$$d_t(x * y) = (x * y) * t$$

 $d_t(x * y) = (x * t) * y$
 $d_t(x * y) = d_t(x) * y$

from Theorem 1 it is proven that d_t is a (l,r)t-derivation in X.

3.3. Definition 3

A Mapping d_t of BP-algebra X is said to be t-regular if $d_t(0) = 0$.

3.3.1. Theorem

Let (X,*,0) is a BP-algebra and d_t is a mapping of X to itself.

- 1. If d_t is a (l,r)-t-derivation in X and d_t is a t-regular, then $d_t(x) = d_t(x) \wedge x$ for all $x \in X$,
- 2. If d_t is a (r, l)-t-derivation in X and d_t is t-regular, then $d_t(x) = x \wedge d_t(x)$ for all $x \in X$

Proof,

Let *X* be a BP-algebra.

1. Let d_t be a (l,r)-t-derivation in X, since d_t is a t-regular and by Theorem (iii) in BP-Algebra subsection we get:

$$\begin{aligned} d_t(x) &= d_t(x*0) \\ d_t(x) &= (d_t(x)*0) \land \big(x*d_t(0)\big) \\ d_t(x) &= d_t(x) \land \big(x*d_t(0)\big) \\ d_t(x) &= d_t(x) \land x*d_t(0) \\ d_t(x) &= d_t(x) \land (x*0) \\ d_t(x) &= d_t(x) \land x \end{aligned}$$

for all $x \in X$.

2. Let d_t be a (r, l)-t-derivation in X, since d_t is a t-regular and by Theorem (iii) in BP-Algebra subsection we get:

$$d_t(x) = d_t(x*0)$$

$$d_t(x) = (x*d_t(x)) \land (d_t(x)*0)$$

$$d_t(x) = (x*0) \land (d_t(x))$$

$$d_t(x) = x \land d_t(x)$$

for all $x \in X$.

4. CONCLUSION

In this paper, we define a (l,r)t-derivation in BP-algebra and investigate its properties. Then, given the definition of (r,l)t-derivation in BP-algebra and investigate its properties. In general, the properties (l,r) and (r,l)t-derivation in BP-algebra obtained for d_t which satisfies the t-regular properties.

REFERENCES

- [1] Neggers, J. & Sik, K. (2002). On B-algebras. *Matematički vesnik*, **54**(1-2), 21–29.
- [2] Kim, H. S. & Park, H. G. (2005). On 0-commutative B-algebras. *Scientiae Mathematicae Japonicae*, **62**(1).
- [3] Walendziak, A. (2005). A note on normal subalgebras in B-algebras. *Scientiae Mathematicae Japonicae*, **62**(1).
- [4] Zhan, J. & Liu, Y. L. (2005). On f-derivations of BCI-algebras. *International Journal of Mathematics and Mathematical Sciences*, **2005**(11), 1675–1684.
- [5] Chandramouleeswaran, M. & Ganeshkumar, T. (2012). Derivations on TM-algerbas. *International Journal of Mathematical Archive*, **3**(11). 3967–3974.
- [6] Ashraf, M., Ali, S., & Haetinger, C. (2006). On derivations in rings and their applications. *The Aligarh Bull of Math*, **25**(2), 79–107.
- [7] Aprijon, A. (2021). Annual premium of life in insurance with uniform assumptions. *Science, Technology and Communication Journal*, **1**(2), 67–73.
- [8] Jun, Y. B., Roh, E. H., & Kim, H. S. (2002). On fuzzy B-algebras. *Czechoslovak Mathematical Journal*, **52**(2), 375–384.
- [9] Rahmawati, R., Rahma, A. N., & Septia, W. (2021). Prediction of rupiah exchange rate against Australian dollar using the Chen fuzzy time series method. *Science, Technology and Communication Journal*, **1**(2), 74–81.
- [10] Jun, Y. B. & Xin, X. L. (2004). On derivations of BCI-algebras. *Information Sciences*, **159**(3-4), 167–176.
- [11] Muhiuddin, G. & Al-Roqi, A. M. (2012). On-derivations in BCI-algebras. *Discrete Dynamics in Nature and Society*, 2012.
- [12] Alshehri, N. (2010). Derivations of B-algebras. Science, 22(1).
- [13] Al-Kadi, D. (2016). fq-derivations of G-algebra. International Journal of Mathematics and Mathematical Sciences, 1–5.
- [14] Kandaraj, N. & Devi, A. A. (2016). *f*-derivations on BP-algebras. *International Journal Of Scientific And Research Publications*, **6**(10), 8–18.
- [15] Khan, M. & Dawood Khan, K. M. A. (2021). Characterization of associative PU-algebras by the notion of derivations. *American Journal of Mathematical and Computer Modelling*, **6**(1), 14–18.
- [16] Ramadhona, C. & Gemawati, S. (2020). Generalized f-derivation of BP-algebras. *International Journal of Mathematics Trends and Technology-IJMTT*, **66**.
- [17] Zedam, L., Yettou, M., & Amroune, A. (2019). f-fixed points of isotone f-derivations on a lattice. *Discussiones Mathematicae-General Algebra and Applications*, **39**(1), 69–89.
- [18] Ganeshkumar, T. & Chandramouleeswaran, M. (2013). t-derivations on TM-algebras. *International Journal of Pure and Applied Mathematics*, **85**(1), 95–107.

- [19] Ganeshkumar, T. & Chandramouleeswaran, M. (2013). Generalized derivation on TM-algebras. *Int. J. Algebra*, **7**, 251–258.
- [20] Raza, M. A., & Rehman, N. (2017). On generalized derivation in rings and Banach algebras. *Kragujevac Journal of Mathematics*, **41**(1), 105–120.
- [21] Raza, M. A. & Rehman, N. U. (2016). On prime and semiprime rings with generalized derivations and non-commutative Banach algebras. *Proceedings-Mathematical Sciences*, **126**, 389–398.
- [22] Rehman, N. U., Huang, S., & Raza, M. A. (2019). A note on derivations in rings and Banach algebras. *Algebraic Structures and Their Applications*, **6**(1), 115–125.
- [23] Rasoel, S. & Somayeh, J. (2014). A Note on t-Derivations of B-Algebras, 10, 138–143.
- [24] Chandramouleeswaran, M. & Kandaraj, N. (2011). Derivations on d-Algebras. *International Journal of Mathematical Sciences and applications*, **1**(1), 231–237.
- [25] Ahn, S. S. & Han, J. S. (2013). On BP-Algebras. *Hacettepe Journal of Mathematics and Statistics*, **42**(5), 551–557.