
 

Sintechcom: Science, Technology, and Communication Journal 

Vol. 2, No. 2, February 2022, pp. 32-45 32 
 

Journal homepage: https://sintechcomjournal.com/index.php/stc/index 

Integrated Production Facilities Clustering and Time-Series 
Forecasting Derived from Large Dataset of Multiple 

Hydrocarbon Flow Measurement 

Adityapati Rangga1*, Yohana Dewi Lulu Widyasari2, Dadang Syarif Sihabudin Sahid2 

1Department of Computer, Politeknik Caltex Riau, Indonesia 
2Department of Information Technology, Politeknik Caltex Riau, Indonesia 

ABSTRACT  ARTICLE INFO 

In the complex, mature, and large oilfields, there is a need for Integrated 
solution in order to have a helicopter view of entire facilities 
throughput. The real time metering information provides an on-demand 
daily data and trend; However, it is rarely being connected to analytics 
solution for business intelligence such as, prediction, optimization, 
decision support and forecast. This paper cover about exploratory data 
analysis of large dataset of multiple hydrocarbon facilities metering 
within integrated network, performing multi-feature data clustering and 
making a time-series forecasting techniques. K-Means and PCA are 
combined to make cluster of production facilities which resulted with 
gas processing cluster, high oil producer, high water processing station, 
and the lowest performer in term in hydrocarbon processing. 
Furthermore, VAR and LSTM is compared as forecasting tools for day-
to-day fluid prediction, to maintain normal operational scenario. 
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1. INTRODUCTION 

Production networks and processing facilities can be very complex, with multiple interactions 

and constraints. Start from the reservoir fluids whose properties, such as Gas-Oil Ratio, gas density, 

water cut, are changing with time, flowlines, gas and liquid handlings capacity and constraints [1-3]. It 

is required to have representative number of current performances, predict the state, and forecast the 

fluid according to the historical performance [4].  

There have been many documented applications of such production optimization and modelling, 

ranging from reservoir management, through well work, offline data-driven and physics-based 

modelling to advanced control [5-7].  

Mixed integer nonlinear programming (MINLP) seems able to answer, the optimal routing, 

accommodate the detail operating mode in physical system and plant component, for optimum 

configuration, however it is not based on historical data performance [8-10]. It is most likely focus on 

the detail of the component of the systems, not the entire operation and production performance in a 

unique multiple and scattered gathering station facilities [11, 12]. It is frequently well test-based per 

field, and not measurement based per gathering station. 

The oil and gas standards community has been working to enable end-to-end, real-time data 

transfer from the sensor to simulation or the accounting system or a regulator, in addition to the 

traditional exchange of larger static information [13]. The industry has seen a great deal of progress on 

the uptake of data standards for data in motion and fundamental improvements in the standards 

themselves. The data in motion are real-time data in the drilling and production arenas, and on-
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demand movement of data between applications or among partners and regulators [14-16]. The static 

data is the traditional contextual information about wells and their histories along with information on 

their historical performance and the activities used to create and operate them [17]. 

Integrated combination of production clustering, throughput and forecasting are necessary in a 

geographically scattered facility. Resources need to be maintained, developed and prioritized 

according to the priority cluster, and the production fluctuation need to be addressed in advance, to 

anticipate the short-term fluid fluctuation, and as an addition to surveillance and optimization activity. 

Hence, this research will propose the utilization of big-historical-data performance of 

hydrocarbon fluid output, from multiple gathering station, answering the current state performance 

classification through K-Means, forecasting the future with VAR and LSTM, and leading to accurate 

prioritization and decision support in competitive business environment point of view. 

2. MATERIALS AND METHOD 

The scope of such production optimization has usually been limited to the production network 

only, i.e., from the sand face to the separators: neither the reservoir nor the facilities have been 

explicitly modelled. Instead, these have been approximated using well performance curves, specified 

fluid properties and suitable constraints [1]. Although traditional model-based production optimization 

has already demonstrated significant benefits, the use of fixed constraints to represent the reservoir 

and/or facilities is prone to error. 

In order to overcome these challenges, MR Woodman et al, use MINLP optimization. Hence, it 

is still provided complexity by including a lot of components of production facilities network, and try 

to reconcile the pressure-driven approach that used by production network model, with flow-driven 

approach that used by process simulator. 

2.1. Hydrocarbon Facility 

2.1.1. Gathering Station 

Large oilfield typically consists of multiple gathering station facilities. A Gathering Station is a 

facility for processing the production fluid from oil wells to separate gas, water and oil.  The main end 

product of the gathering station is crude oil that meet the basic sediment and water (BSW) 

requirement. Typical main processing unit on the Gathering Station is following: 

• Gas separation unit.   

• Water-oil separation unit.   

• Oil handling facilities.   

• Water handling facilities.   

• Waste gas handling facilities.   

The simplify of the schematic diagram for the process in the Gathering station is outlined in 

Figure 1.  

 

Figure 1. Typical gathering station facility 
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2.1.2. Gas Plant 

Gas Plant is processing raw gas coming from mostly gas wells and also from other source, that 

is an associated gas (gas separated from oil) from gathering station. The main process on the Gas Plant 

is liquid separation process, compression process and dehydration process.The final product from Gas 

Plant is a dry gas that need to meet internal requirement, delivered to Gas Turbine stations as fuel for 

generating electric power. 

2.2. Hydrocarbon Production 

According to facilities type, we can easily guess, there are 3 type of composite substance that 

extracted from the subsurface, processed in facility, and measured by metering systems. There are oil, 

gas, and water. In details, it can be listed as following, 

 Oil, as a primary product of the oilfields. 

 Produced water. 

 Associated gas, natural gas produced by oil wells. 

 Non-associated gas, natural gas produced by natural gas wells.  

 Condensate, a natural gas liquid with a low vapor pressure compared with natural gasoline and 

liquefied petroleum gas [4]. 

2.3. Methodology 

2.3.1. K-Means Clustering 

 The K-Means algorithm (KM) partitions data into k sets. The solution is then a set of k 

centers, each of which is located at the centroid of the data for which it is the closest centre. For the 

membership function, each data point belongs to its nearest centre, forming a Voronoi partition of the 

data [5]. The objective function that the KM algorithm optimizes is: 

 𝐾𝑀(𝑋, 𝐶) = ∑ ‖𝑥𝑖 − 𝑐𝑗‖
2

𝑗∈{1…𝑘}

𝑚𝑖𝑛
𝑛
𝑖=1  (1) 

This objective function gives an algorithm which minimizes the within-cluster variance (the 

squared distance between each center and its assigned data points). 

The membership and weight functions for KM are: 

 𝑚𝐾𝑀(𝐶𝑙|𝑋𝑖) = {1 ; 𝑖𝑓 𝑙 = arg 𝑚𝑖𝑛𝑗‖𝑥𝑖 − 𝑐𝑗‖
2

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 𝑤𝐾𝑀(𝑥𝑖) = 1 (3) 

KM has a hard membership function, and a constant weight function that gives all data points 

equal importance. KM is easy to understand and implement, making it a popular algorithm for 

clustering. The objective using K-Means is to perform unsupervised learning to production data, and 

revealed the most objective clustering to segregate the performance of production facilities. 

2.3.2. Principal Component Analysis (PCA) 

PCA is defined as an orthogonal linear transformation that transforms the data to a new 

coordinate system such that the greatest variance by some scalar projection of the data comes to lie on 

the first coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on [6]. 

The principal components of a collection of points in a real coordinate space are a sequence of p 

unit vectors, where the i-th vector is the direction of a line that best fits the data while being 

orthogonal to the first i-1 vectors. Here, a best-fitting line is defined as one that minimizes the average 

squared distance from the points to the line. These directions constitute an orthonormal basis in which 

different individual dimensions of the data are linearly uncorrelated. Principal component analysis 

(PCA) is the process of computing the principal components and using them to perform a change of 

basis on the data, sometimes using only the first few principal components and ignoring the rest. 
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PCA is used in exploratory data analysis and for making predictive models. It is commonly used 

for dimensionality reduction by projecting each data point onto only the first few principal 

components to obtain lower-dimensional data while preserving as much of the data's variation as 

possible. The first principal component can equivalently be defined as a direction that maximizes the 

variance of the projected data. The i-th principal component can be taken as a direction orthogonal to 

the first i-1 principal components that maximizes the variance of the projected data. 

 

Figure 2. PCA Step 

2.3.3. Time Series Forecasting with VAR and LSTM 

Vector auto regressive (VAR) is a multivariate time series model that can be used to forecast 

more than one variable collectively. It can be used in scenarios where multiple variables have a 

dependency on each other. In VAR modelling, each variable is modelled as a linear combination of 

past observations of itself and other variables.Therefore, it can be modelled as a system of equations, 

where each variable gets one equation that can be represented as vectors. Suppose we have a vector of 

time series data Yt, then a VAR model with k variables and p lags can be expressed mathematically in 

Eq. (4) where, Yt, β0 and are k x 1 column vectors and β0, β1, β2, …, βp are k × k matrices of 

coefficients.  

 𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ + 𝛽𝑝𝑌𝑡−𝑝 + 𝜀𝑡 (4) 

If a time series is not stationary, it is essential to differentiate the time series before training the 

model and invert the predicted values to get the real forecast by the number of times differentiated [7]. 

Long short-term memory (LSTM) is a special kind of recurrent neural network which makes 

use of sequential observations and learns from the prior memorize the sequence of information. The 

memorization of the prior trend of the data is done through a few gates alongside a memory line 

associated in an ordinary LSTM [18]. Each LSTM is a set of cells where the data streams are captured 

and stored. LSTMs create a transport line that connects one module to another, carrying data from the 

past and keeping them for the present. Using gates in each cell, data can be disposed of, filtered, or 

added for the next cells. Those gates are based on a sigmoidal neural network layer which can enable 

the cells to optionally let data pass through or discard them [19].  

A sigmoid layer takes input in the range of zero and one, indicating the amount of data goes 

through in each cell. Estimation of zero value says nothing passes through the cell and one indicates 

that everything passes through the cell. There are three types of gates involved in each LSTM to 

control the state of each cell, Forget Gate, Memory Gate and Output Gate. Forget Gate outputs a 

number between 0 and 1 to say completely ignore this and completely keep all. Memory Gate chooses 
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which new data need to be stored in the cell. Output Gate decides what will be yielded out of each cell 

[7]. Dissanayake et al. conclude VAR produced the best performance, followed by LSTM and 

ARIMA. 

3. RESULTS AND DISCUSSION 

3.1. Exploratory Data Analysis 

Multiple point of production flowrate measurement is gathered through the database query. 

Datasets consist of multi-feature attributes, as following in Figure 3. 

 

 

Figure 3. Dataset head and information 

Some not a number data filled with 0 and the attributes that being dropped are, all THEOR_ and 

LOSS value that possible to be utilized in future research, related to production loss. 

Some of informative graph are plotted to see a brief profile of the dataset. It is clearly show 

within the density plot in Figure 4 that the majority of the production facilities are processing oil and 

water, with less production of condensate and gas.  
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Figure 4. Density plot of production flowrate 
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The heatmap correlation in Figure 5 shows that there is strong correlation between fluid and 

water, whereas it can be concluded that the majority of the field are having high water cut. The next 

strong correlation is between condensate and gas with 0.59. It is obvious that gas fields often followed 

by condensate production.  

The last interesting correlation is oil with fluid and water (0.42 - 0.44), and condensate with 

fluid and water (0.46 – 0.49). The more fluid and water process in the production facility, it is most 

likely the more oil production will be gathered. 

The least correlated attributes are gas and oil with -0.14. It can be interpreted as the gas fields 

are separated and not correlated with oil fields, or the oil fields are producing few associated gas. 

 

Figure 5. Correlation heatmap of measurement 

3.2.  K-Means Clustering and PCA Result 

 There are more than 30 gathering station facilities inside the dataset with various production 

performance. However better clustering with basis of production performance can be constructed, in 

order to easily capture the priority and distinguish the operating performance. 

A fundamental step for any unsupervised algorithm is to determine the optimal number of 

clusters into which the data may be clustered. The Elbow Method is one of the most popular methods 

to determine this optimal value of k. 

Distortion is calculated as the average of the squared distances from the cluster centers of the 

respective clusters. Typically, the Euclidean distance metric is used, where Inertia is the sum of 

squared distances of samples to their closest cluster center. 

Elbow method is used to see the elbow point as the basis to decide how much n-cluster. The 

result show in Figure 6Figure 6.  that 4 cluster is quite represent the group of production facility cluster. 
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Figure 6. Elbow chart 

 The following figure are the comparison of pair scatterplot of the attributes before and after 

clustering. The Figure 7 and 8 show cluster color of individual gathering station facilities, and the 

show the 4 new clusters.  

 

Figure 7. Scatter pair plot with gathering station clustering 
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Figure 8. Scatter pair plot after K-Means clustering 

 The next following step is to reduce the attribute dimension using PCA, and collect the 

information of membership of the cluster. In order to have better view of the clustering in 3D plane, 

PCA 3 components are being executed. Table 1 show the head data of pca and cluster. 

 

Table 1. PCA 3 components 

 



    

Sintechcom, 2(2), 32-45 

41 

 Standard scalar data frame is also being implemented to reduce dimension of the data. Along 

with the 3D plot, the membership of the 4 clusters is also being listed out, to see the characteristic of 

the Gathering Station. 

 

 

 

Figure 9. Plot of PCA with K-Means clustering 

The clearest view is the cluster-3 (red in 2D plot), its outlier characteristics is clearly seen in 

Figure 9. It is a Gas Plant, with only processing gas and condensate. Cluster-2 filled with high oil 

producer, and Cluster-1 is high water processing, whereas the cluster 0 are the lowest performer in 

term of hydrocarbon processing.This clustering is useful for business-oriented purpose in term of 

activity focus and priority, also an opportunity to develop efficient organization capability [20]. 

 

3.3. Time-series Forecasting result 

 Forecasting the hydrocarbon is part of the business planning projection and day to day 

operations as well. The acceptable result of forecasting, usually being used as basis for cross-function 

study, budgetary, critical decision, and future growth. Figure 11 shows sample of one Gathering 

Station hydrocarbon which VAR provide good prediction for day-to-day forecast, of oil, gas, and 

water. The blue line chart in Figure 10 is the actual data, where the black chart in Figure 11 is the 

VAR model. 
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Figure 10. NL_BKO hydrocarbon fluid dataset 

 

Figure 11. VAR model of NL_BKO production 
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Practically, the model can be used for day-to-day operational, the more advance model of could 

be seen in Figure 12 LSTM provide good result visually. 

 

 

Figure 12. Oil production time-series forecast with LSTM 

Through root mean squared error (RMSE) comparison, it is clearly seen that LSTM with RMSE 

1369.19 is better than VAR with enormous value 29249.59 for day-to-day operational forecasting. 

 

Figure 13. RMSE comparison of VAR and LSTM 
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4. CONCLUSION 

In a large oilfield, with many scattered production facilities, with limited resources, it is 

urgently required to have an integrated mapping of the overall performance. Clustering with K-Means 

and PCA can be a good solution to provide objective grouping, to see the high-performance facility 

compare to less productive one, and open up the opportunity for resource allocation and prioritization. 

Forecasting the hydrocarbon for day-to-day decision support can be an addition to the real-time 

measurement. In practical, prediction and actual real time value can be compared directly to see the 

accuracy of the model. There is no need for model accuracy, at least it can show the trend. The 

forecasting model also can be as a basis for further growth case, business plan purpose, and cross-

function study as well. Based on RMSE result the LSTM is better for forecasting compare to VAR. 

The dataset consists of loss production value, that could be an interested topic for further model and 

forecast. 
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