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ABSTRACT  ARTICLE INFO 

This article describes the concept of the time-dependent Schrödinger 
equation (TDSE) as a review to add a detailed understanding of the 
steps to formulate TDSE which can be seen from the classical 
mechanic's concept as a mechanical wave function. In this article, a 
comprehensive approach to the concepts of momentum and energy in 
particles will be described using operators working on wave functions. 
The results show that the use of momentum and energy operators can 
show that TDSE is a Hamiltonian system. 
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1. INTRODUCTION 

The time-dependent Schrödinger equation (TDSE) plays a very important role in the 

development of modern physics, especially quantum mechanics, logically it can be analogous to the 

laws of classical physics [1-5]. The Schrödinger equation is a wave function that is used to provide 

information about the waveform of a particle [6-10]. 

The Schrödinger equation explains that the behavior of free particles such as electrons has 

certain energy levels that are discrete [11-15]. If the wave function can represent the motion of 

electrons, then the wave energy or the energy of the electrons that represent it must be the same [16-

21]. An electron has a total energy consisting of kinetic and potential energy where the potential 

energy is a function of the   position so that the total energy of the electron as a particle is [22]: 

   
  

  
    (1) 

In a general coordinate system, the total energy of a function representing the energy of a 

particle can be defined by the momentum  , position  , and time   as a Hamiltonian system as in the 

following equation [23]: 

  (     )  
  

  
   (   ) (2) 

The Schrödinger equation is a wave equation that is derived directly from the mechanical 

wave function by approaching the momentum and energy of the particle. In this article, we will 

comprehensively describe the approach to the concepts of momentum and energy in particles using 

operators working on wave functions. 

https://creativecommons.org/licenses/by/4.0/
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2. RESEARCH METHODS 

According to Ward (2006), the wave function for a free particle moves with a certain 

momentum and energy where the state of this particle is related to Planck's quantization principle [24]. 

Particle momentum has a relationship with wavelength and applies the frequency and wavelength 

relationship to energy and momentum using angular frequency and wave number as in the following 

equation [25]: 

         (3) 

and 

   
 

 
 
 

 
    (4) 

In the case of a particle moving freely in the positive x-axis direction with momentum      

where     . In the case of a traveling wave function moving according to the motion of the free 

particle this is a plane waveform as in the following equation [26]: 

  (   )     (      ) (5) 

by substituting Equation (3) and Equation (4) into Equation (5), the wave function of Equation (5) can 

be simplified to: 

  (   )     
(      )

  (6) 

This wave function is a mechanical wave function that can be used to formulate the 

Schrödinger equation. The energy of a free particle in classical mechanics which is related to the 

concept of momentum is: 

   
  
 

  
 (7) 

from Equation (7) can be derived the equation of motion of the free particle, namely: 

  ̂ (   )  
 

  
 ̂  (   ) (8) 

This wave function can be used to formulate the Schrödinger equation by operating this 

function by differentiating position and time as follows: 

    
 

  
 (   )     (   ) (9) 

According to Briggs and Rost (2001), operation    (    ) expresses the momentum    of 

the wave function, then the second form of differentiation with respect to time is [27]: 

   
 

  
 (   )    (   ) (10) 

where the   (    ) operation states the energy value   of the wave function. According to Sarma 

(2011) Equation (9) and Equation (10) is an eigen equation that shows the operators    (    ) and 

  (    ) which are the values of momentum and energy [28] so that the momentum and energy 

operators can be defined as follows: 

  ̂    
 

  
 (11) 

and 
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  ̂    
 

  
 (12) 

The momentum and energy operators obtained from the plane wave function must be suitable 

for free particles under general conditions and must be the same for different variables [29]. 

3. RESULTS AND DISCUSSIONS 

The procedure for obtaining the Schrödinger equation for free particles in one-dimensional 

space using the free particle wave function given by Equation (8) can be simplified by applying 

Hamilton's principle as in the following equation [26, 30]: 

       (13) 

Hamilton's equations can be derived using the canonical transformation equations for spatial 

coordinates and canonical momentum for an n-dimensional classical mechanical system as follows: 

   
  
 

  
 (14) 

if the wave function in Equation (6) is differentiated twice with respect to   then we get: 

 
  

   
 (   )  [ 

  
 

  
]  (   ) (15) 

then the wave function in Equation (6) is reduced to   then we get: 

 
 

  
 (   )  [

  

 
]  (   ) (16) 

by using the relationship in Equation (14) then Equation (15) and Equation (16) can be simplified to: 

 
 

  
 (   )  [

  

  
] [ 

   
 

   
 (   )] (17) 

then by substituting Equation (15) into Equation (17) we get: 

   
 

  
 (   )   

  

  

  

   
 (   ) (18) 

In general, the three-dimensional coordinate system of equations of motion for free particles 

can be expressed using Laplacian    so that Equation (18) can be written as: 

   
 

  
 (   )   

  

  
   (   ) (19) 

on a freely moving particle in a system with a certain potential  (   ) so that Equation (19) becomes: 

   
 

  
 (   )   

  

  
   (   )   (   ) (   ) (20) 

by using Equation (20) in the classical variable form of the wave function in Equation (15) which is a 

two-times differential with respect to   so that the equation of motion of the free particle can be 

written as: 

   
 

  
 (   )   

 ̂ 

  
 (   )   (   ) (   ) (21) 

by writing the Hamiltonian equation in Equation (21) in the form of a Hamiltonian operator such as: 
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  ̂   ̂   ̂ (22) 

where  ̂   ̂     so that Equation (21) can be simplified to: 

  ̂ (   )  [
 ̂ 

  
  (   )] (   ) (23) 

then divide Equation (23) by the wave function  (   ), so that Equation (23) becomes a simpler form, 

namely: 

  ̂  
 ̂ 

  
  (   )   ̂   ̂ (24) 

or 

  ̂(     )  
 ̂ 

  
  (   ) (25) 

from Equation (25) where TDSE satisfies the principle of Hamilton's system in classical mechanics as 

a function of position, momentum, and time. 

4. CONCLUSION 

In deriving TDSE, it can be done by using a mathematical approach and the concepts of 

momentum and energy operators to obtain a wave equation or a partial differential equation. 

Furthermore, TDSE can be reduced to classical mechanics as a principle of the Hamiltonian system, so 

that TDSE can be written in a simplified form of the Hamiltonian system  ̂   ̂   ̂ as a function of 

position, momentum, and time. 
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