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ABSTRACT  ARTICLE INFO 

Metamaterials possess distinct characteristics that make them very 
suitable for scientific investigation. This phenomenon's hallmark has left 
scientists perplexed and skeptical. Researchers have conducted 
numerous studies to explore the composition of one or more 
metamaterials. This project focused on the development of a linear-
sequence metamaterial. Next, we examined the alterations in the optical 
characteristics of the metamaterial. The utilized frequency range is 0 to 
9 GHz. We construct the hexagonal split ring resonance (SRR) 
metamaterial with a radius of 2.9 mm, consisting of one to four 
hexagonal SRRs. The findings revealed that the SRR hexagonal 
metamaterial structure had the highest negative refractive index value, 
reaching -9.33 in combinations of four hexagonal SRRs. 
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1. INTRODUCTION 

Many metallic elements arranged at consistent intervals construct metamaterials, which are 

electromagnetic materials. Reduced dimensions construct metamaterials specifically to interact with 

electromagnetic waves of the shortest possible wavelengths [1-4]. The reverse Doppler effect refers to 

metamaterials' ability to modify electromagnetic waves that remain unchanged in their properties 

when propagating in the opposite direction. The geometry of the metamaterial primarily determines 

these qualities, not its composition or material [5, 6]. Several names and terminologies refer to 

metamaterials with negative permittivity and permeability. These include left-handed LH media, 

media with a negative refractive index, and double-negative (DNG) metamaterials [7-11]. 

Their distinct atomic arrangements determine the qualities of materials. It is worth noting that 

nearly all naturally occurring materials exhibit positive permittivity and permeability values across the 

whole electromagnetic spectrum of metals [12, 13]. Materials with negative characteristics will 

impede wave propagation because the refractive index becomes imaginary. Materials with negative 

permittivity and permeability have a refractive index that is both real and negative, which is similar to 

how waves travel [14-18]. 

The main idea behind metamaterial sensing is that the transmission and reflection coefficients 

of the S-parameter (scattering) change frequency [19, 20]. The parameters fluctuate due to changes in 

the metamaterial resonator's permittivity, permeability, or refractive index. Another technique for 

sensing relies on phase reflection and transmission coefficients [21-25]. The aim of this study is to 

investigate abnormalities resulting from the dispersion of refractive index in metamaterials. We 

employ the Nicolson-Ross-Weir approach to quantify the negative refractive index of metamaterials 

https://creativecommons.org/licenses/by/4.0/


 

Science, Technology and Communication Journal, 4(2), 63-68, February 2024 

64 

using S-parameter transmission and reflection data. We adapted this technique to calculate the 

permittivity and permeability values of the S-parameters using the CST Studio Suite software and the 

MATLAB application. 

2. RESEARCH METHODS 

With the CST software Studio Suites, we will ascertain the specific structural characteristics of 

the internal metamaterial. This will involve determining the values of Ts (substrate thickness), TP 

(patch thickness), c1 (gap and separation distance between rings), and c2 (patch width) in order to 

construct the hexagonal configuration. The next step is to select the constituent components for the 

metamaterial structure. The components used can include copper for the patch (radiation component) 

and ground (earthing component), as well as FR-4 as a substrate (dielectric material). We measure the 

diameters of these components in millimeters (mm). We conducted the hexagonal split-ring resonators 

(SRR) metamaterial structure design procedure, modifying the radius values R1, R2, R3, and R4 as 

required. Initially, we will establish the boundary field conditions and excitation sources in order to 

model metamaterial structures using various combinations of hexagonal SRR, We determine the 

frequency of observations and initiate the experiment by executing the Start experiment command. We 

present the simulation results as S-parameter data and then export it to Excel using the *.xlxs file 

format. Next, we import the data into MATLAB to calculate and display the permittivity, 

permeability, and refractive index values derived from the data, both in numerical form and through 

graphical representations. 

 

Figure 1. Flowchart for assessing the optical properties of metamaterials. 
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3. RESULTS AND DISCUSSIONS 

The purpose of this investigation was to examine the unique outcomes of two types of 

metamaterial constructions, one with metal inclusions and one without. We can use the NRW 

approach to analyze S-parameter data, specifically S11 (reflection) and S21 (transmission), which 

leads to the identification of DNG (double negative) materials. These materials have negative values 

without metal, making them a type of metamaterial. We derive the metamaterial's negative properties 

by analyzing the real component at resonant frequency. 

 

Figure 2. Graph of real parts V1 and V2 of FR4 substrate. 

The absorption of electromagnetic wave energy by electron polarization leads to a certain 

frequency at which material dispersion resonance occurs, resulting in deflection in the same direction. 

The resonance frequency values Re(V1) and Re(V2) are shown in Figure 2. They are similar to the 

permittivity and permeability values in Figures 3 (a) and (b). Figure 3 (c) depicts a graph of resonant 

frequency that closely resembles the resonant frequencies of permittivity and permeability at 4.45 GHz 

and 6.94 GHz, respectively, based on the refractive index, derived from the square root of permittivity 

and permeability. 

  
(a) (b) 

 
(c) 

Figure 3. Combination of one hexagonal SRR: (a) permittivity; (b) permeability; and (c) refractive index. 
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Findings from the study shown in Figure 4 (a), (b), and (c) show that when four hexagonal 

SRRs are mixed together, the initial resonance frequency causes larger negative values of permittivity, 

permeability, and refractive index compared to when one to three metamaterials are mixed together. 

This phenomenon arises due to the introduction of a dielectric medium, which leads to a decrease in 

the polarization of electrons as a result of the generated electric and magnetic field moments [6]. 

Consequently, alterations in the material's relative permittivity and permeability have a more 

significant effect. At a frequency of 1.97 GHz, the refractive index reaches its maximum negative 

value of -9.33. Augmenting the hexagonal SRR metamaterial structure, particularly at lower 

frequencies, diminishes the frequency shift. The resonance frequency changes when hexagonal SRR 

are added. This makes the induction of both the electric (E) and magnetic (B) fields weaker for each 

structure. 

  
(a) (b) 

 
(c) 

Figure 4. Hexagonal SRR combination: (a) permittivity; (b) permeability; and (c) refractive index. 

4. CONCLUSION 

Permittivity and permeability only derive their resonant frequencies from the actual 

components V1 and V2, respectively. Adding metal particles and making the hexagonal SRR 

metamaterial structure on the substrate bigger cause the resonance to rise and the frequency to move 

toward lower levels. The negative refractive index grows by 50% as the number of hexagonal SRR 

metamaterial structures increases from one to four, resulting in a range of values from -6.64 to -9.33. 
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