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ABSTRACT  ARTICLE INFO 

Diabetes mellitus (DM) is a critical health condition caused by insulin 
production failure, leading to elevated blood glucose levels. DM often 
results in severe complications such as heart disease, stroke, and 
diabetic foot ulcers (DFU), which pose risks of infection and potential 
amputation. This study developed a machine learning model for early 
detection of diabetic foot ulcers, using thermogram images and the 
thermo dataset containing detailed foot temperature data. The multi-
classifier model integrates CNNs for processing thermogram images and 
an ANN for tabular data analysis. Various image enhancement 
techniques were applied, including solarize, CLAHE, posterize, and 
gamma adjustment, to improve the visibility of key temperature 
distribution patterns. The results demonstrate that solarize consistently 
emerged as the most effective image enhancement method, significantly 
improving model performance across all evaluation metrics. Models 
enhanced with solarize achieved an impressive accuracy of 97.06%, 
alongside a perfect AUC score of 1,000. Additionally, the application of 
image enhancement techniques proved instrumental in reducing 
training and inference times, indicating computational efficiency. The 
integration of temperature data with enhanced thermogram images 
further boosted predictive accuracy while maintaining critical thermal 
information. This study underscores the transformative potential of 
image enhancement techniques, particularly solarize, in advancing the 
accuracy and efficiency of early detection models for diabetic foot ulcers. 
These findings contribute meaningfully to the development of medical 
imaging technologies, offering a robust framework for improving disease 
diagnosis and management. 
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1. INTRODUCTION 

Diabetes Mellitus (DM) is a chronic disease characterized by the pancreas's inability to 

produce sufficient insulin, leading to elevated blood glucose levels. While the primary etiology 

remains uncertain, genetic predisposition and lifestyle factors significantly contribute to its onset [1]. 

If left unmanaged, diabetes can result in severe complications, including cardiovascular disease, 

stroke, renal failure, diabetic foot ulcers (DFUs), and retinopathy [2]. Common symptoms include 

polyuria, polydipsia, and polyphagia [3]. 

Among these complications, DFUs are particularly prevalent and serious. DFUs manifest as 

open sores on the plantar surface of the feet in diabetic patients and carry a high risk of infection. 

Contributing factors include diabetic neuropathy, arthropathy, and peripheral vascular disease. DFUs 

can progress to tissue infection, gangrene, and may ultimately necessitate amputation [4]. 

Thermography has emerged as a non-invasive technique for early detection of DFUs by 

analyzing temperature distributions on the foot's surface [5–7]. This contactless imaging modality 
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measures real-time surface temperatures, offering insights into blood flow and skin integrity without 

physical interaction [7]. However, the inherently low quality of thermographic images mandates the 

use of image enhancement techniques to improve their diagnostic utility. 

Image enhancement is crucial in medical imaging to adjust brightness, contrast, and other 

parameters, thereby improving image quality [8]. A multitude of enhancement algorithms have been 

developed and effectively applied in medical imaging, remote sensing, and computer vision [9–11]. 

Applying these techniques to thermograms can reveal critical features otherwise difficult to detect, 

enhancing diagnostic accuracy. 

In this study, we developed a machine learning model for early detection of DFUs using 

enhanced thermographic foot images. We employ image enhancement techniques such as solarization, 

posterization, Contrast Limited Adaptive Histogram Equalization (CLAHE), and gamma adjustment to 

improve image clarity. While these methods accentuate key visual patterns, they may obscure essential 

temperature details crucial for diagnosis. To address this, we incorporate tabular data containing 

detailed temperature readings from the thermograms and additional patient information to enrich the 

model's performance and preserve vital diagnostic information. 

Our proposed approach aims not only to enhance the accuracy of early DFU detection but also 

to contribute to the advancement of medical imaging technologies in disease diagnosis. By integrating 

image enhancement techniques with machine learning and supplementary data, we seek to improve 

medical image quality and diagnostic outcomes. 

2. THEORETICAL REVIEW 

2.1. Research on Thermography 

Thermography has emerged as a promising non-invasive technique for early detection of 

diabetic foot ulceration by analyzing plantar temperature distributions. Vardasca et al. [12] classified 

neuro-ischemic and ischemic diabetic foot ulcers (DFUs) using data from 39 patients with active DFUs. 

By employing Support Vector Machines (SVM), they achieved an accuracy of 87.5% without applying 

any image enhancement techniques, underscoring the potential of thermograms in detecting severe 

diabetic complications. 

Adam et al. [13] investigated thermograms from 33 healthy and 33 diabetics individuals, using 

Discrete Wavelet Transform (DWT) and Higher Order Spectra (HOS) for feature extraction. Their SVM 

model yielded an accuracy of 89%, sensitivity of 82%, and specificity of 97%. Similarly, 

Balasenthilkumaran et al. [14] processed thermograms from 122 diabetic and 45 non-diabetic subjects 

using segmentation, noise reduction, and feature extraction methods such as Gray-Level Co-occurrence 

Matrix (GLCM). They achieved a classification accuracy of 93.3% with a Multilayer Perceptron (MLP) 

classifier. Jayapal et al. [15] analyzed 314 diabetic and 160 non-diabetic cases, employing Chi-square 

feature selection and achieving 93% accuracy with an SVM classifier, further validating the efficacy of 

thermographic analysis in diabetes classification. 

Mounika and Thirunavukkarasu [16] attained 90% accuracy using a Naive Bayes classifier 

without preprocessing or feature extraction, relying on variables like alpha values and confidence 

intervals for feature selection. Vítor and Teixeira [17] achieved 85% accuracy through pixel clustering 

and thresholding techniques on thermograms from 122 diabetic and 45 non-diabetic cases, highlighting 

the role of preprocessing in enhancing classification performance. Khandakar et al. [6] applied Adaptive 

Histogram Equalization (AHE) and gamma correction, extracting features such as Estimated 

Temperature Difference (ETD). Using multiple classifiers, they reported that an MLP classifier was 

achieved 91% accuracy, demonstrating the benefits of combining image enhancement and features 

selection for improved model performance. 

Despite these advances, the inherently low quality of thermographic images often hinders 

accurate information extraction. This limitation indicates a need for advanced data processing techniques 

to enhance image quality and facilitate more effective analysis. 

2.2. Research on Medical Data Using Image Enhancement 

Image enhancement techniques are vital for improving the clarity and diagnostics precision of 

medical images. Gamara et al. [18] applied Contrast Limited Adaptive Histogram Equalization 



 
 

Optimization of plantar foot thermogram for diabetic foot ulceration … (Huda et al.) 

51 

(CLAHE) and Wiener filtering to chest X-rays, increasing classification accuracy to 78%. Deepak and 

Bharanidharan [19] utilized Parabolic Balance Contrast Enhancement (PBCE) for osteosarcoma 

classification, achieving an impressive 98.5% accuracy with an ensemble model. This highlights PBCE's 

capability to enhance contrast and reveal intricate details. 

Tasci et al. [20] employed CLAHE for tuberculosis detection on chest X-ray datasets, achieving 

accuracies of 97.5% and 97.6% with Inception V3 and Xception models, respectively. Anand et al. [9] 

improved chest X-ray classification accuracy from 54% to 66% by using techniques like CLAHE and 

histogram equalization, underscoring the value of enhancing image details. Kuruba and Gopalan [10] 

applied contrast adjustment for retinal vessel detection, achieving up to 99% accuracy on the 

CHASE_DB1 dataset using IterNet, illustrating the role of image enhancement in simplifying complex 

medical image patterns. 

However, the application of image enhancement techniques to DFU thermograms remains 

limited, and even fewer studies have integrated enhanced images with tabular data, such as detailed 

temperature readings and patient information. Existing research on thermogram-based DFU detection 

often reports lower accuracy levels, indicating substantial room for improvement. This gap presents an 

opportunity to enhance diagnostic performance by applying image enhancement techniques that have 

proven successful in other medical imaging domains. By integrating these techniques with thermogram 

images and combining them with comprehensive tabular data, critical features that are otherwise difficult 

to detect can be identified, thereby improving the overall accuracy of diagnostic models. 

2.3. Image Enhancement 

The selection of image enhancement techniques—Contrast Limited Adaptive Histogram 

Equalization (CLAHE), Posterization, Solarization, and Gamma Adjustment—was strategically based on 

their unique abilities to enhance thermogram images, making critical features related to foot temperature 

distribution more discernible. 

CLAHE and Gamma Adjustment represent computational approaches focused on optimizing 

image contrast and brightness to clarify key features. CLAHE enhances local contrast and highlights fine 

details without over-amplifying noise, making it particularly useful in medical image processing where 

subtle variations are diagnostically significant. Gamma Adjustment modifies the brightness levels across 

the image, enhancing areas of low or high intensity to make subtle temperature variations more distinct. 

In contrast, Posterization and Solarization offer more stylized transformations aligned with 

artistic approaches. Posterization reduces the number of tonal levels in the image, which can decrease 

noise and simplify temperature distribution patterns, aiding in the identification of significant anomalies 

through an abstract representation. Solarization partially inverts pixel intensities, creating a dramatic 

effect that emphasizes temperature anomalies and highlights significant differences in thermal patterns. 

By employing these diverse enhancement techniques, we aim to provide multiple perspectives 

on foot temperature features. This variety allows the machine learning model to extract richer 

information from the image, potentially capturing features that might be overlooked using standard 

enhancement methods. Ultimately, integrating these techniques is expected to improve the model's 

accuracy in detecting diabetic conditions by enhancing the visibility of key diagnostic features in 

thermogram images. 

2.4. Posterize 

Posterization is an image enhancement technique that reduces the number of colors intensity 

levels in an image, creating a visual effect reminiscent of a poster with simplified and segmented color 

regions. In the context of 8-bit RGB images—where each color channel (red, green, and blue) ranges 

from 0 to 255—posterization is applied individually to each channel to simplify the overall color palette 

and accentuate important visual features. 

For images with three color channels (RGB), posterization must be applied individually to each 

color channel. The general formula for applying posterization to an RGB image is as follows: 

           
     

        
 (1) 

where Imax represents the maximum value in the color channel 𝑖 (255 for an 8-bit RGB image), and levels 

is the desired number of color intensity levels. 
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In the context of an 8-bit RGB image, where each color channel (red, green, and blue) can take 

on a maximum value of 255, the process of posterization begins by first determining the desired number 

of color intensity levels, referred to as "levels." These levels dictate how many distinct intensity values 

each channel will be reduced to, thereby simplifying the color range of the image. 

Once the desired number of intensity levels is set, the next step involves recalculating the pixel 

values for each color channel. This is done by taking the original pixel value of a given color channel and 

dividing it by the interval corresponding to the number of levels. The resulting value is then rounded to 

the nearest intensity level, reducing the number of distinct colors in the image. 

After obtaining the new intensity level for each color channel, the pixel value is recalculated by 

multiplying the new intensity level by the same interval that was used in the previous step. This 

operation is repeated for each pixel in image, effectively reduces the color complexity of entire image. 

       𝑖          (
 

         
)            (2) 

where 𝑖 represents the red, green, and blue color channels respectively, and intervali refers to (1). 

2.5. Solarize 

Solarization is an image enhancement technique that inverts the pixel intensities of an image 

beyond a specific threshold value. In an RGB image, solarization can be applied to each color channel 

(red, green, and blue) individually. This process transforms the appearance of the image by reversing the 

colors in the brighter areas while leaving the darker areas mostly unaffected. The solarization operation 

can be mathematically defined as follows: 

   (   )  {
 (   )

     (   )
   

    (   )   

    (   )   
 (3) 

where I( , ) represents the original pixel intensity at location ( , ), I'( , ) is the solarized pixel 

intensity, T is the solarization threshold, and the intensity values are assumed to be in the range [0, 255]. 

For pixel values greater than T, the inversion operation enhances contrast by flipping high-intensity 

values to their complementary low values. 

2.6. Contrast Limited Adaptive Histogram Equalization (CLAHE) for RGB Image 

Contrast Limited Adaptive Histogram Equalization (CLAHE) is an image enhancement 

technique designed to improve image contrast while minimizing noise amplification. Unlike traditional 

histogram equalization, which globally adjusts contrast across the entire image, CLAHE operates on 

small, localized regions called tiles. This localized enhancement brings out subtle details in areas with 

varying contrast without over-amplifying noise. 

When applying CLAHE to RGB images, processing each color channel (red, green, and blue) 

independently can lead to color distortions because contrast enhancements may alter each channel non-

uniformly. To avoid such artifacts, a common practice is to convert the RGB image to the LAB color 

space. In LAB space, the L channel represents lightness (intensity), while the A and B channels carry 

color information (chrominance). By applying CLAHE exclusively to the L channel, we enhance 

brightness and contrast without affecting the image's color balance. 

After the image is converted to LAB format, CLAHE is applied to the L channel. CLAHE 

operates by enhancing the contrast in local regions of the image, dividing it into small tiles, and 

equalizing the histogram within each tile. For each tile in the L channel, the CLAHE algorithm involves 

the following steps: 

1. Divide the image into tiles, the L channel is divided into non-overlapping tiles of size m×n. 

2. Clip the histogram, the histogram for each tile is computed, and bins that exceed a predefined 

threshold T are clipped. This step prevents over-enhancement of noise or other small details. 

3. Redistribute clipped values, the excess values from the clipped bins are redistributed across the 

histogram to balance the intensity levels and avoid extreme contrast in small areas. 

4. Apply Histogram Equalization, the pixel values within each tile are redistributed based on the 

cumulative distribution function (CDF) of the clipped histogram. The formula for the new intensity 

I'(x,y) for each pixel is: 
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   (   )  
   ( (   ))    (   )

   (   )    (   )
 (         )       (4) 

where I( , ) is the original pixel intensity in the L channel at position ( , ), CDF(I( , )) is the 

cumulative distribution function of the pixel's intensity in the tile, max(CDF) and min(CDF) are the 

minimum and maximum values of the CDF in the tile, Lmax and Lmin the minimum and maximum 

intensity values in the L channel. 

Once CLAHE has been applied to the L channel, the modified LAB image is converted back to 

RGB format. During this conversion, the A and B channels, which store color information, remain 

unchanged. The transformation from LAB back to RGB can be written as: 

          (      ) (5) 

where f -1
 represents the inverse transformation from LAB to RGB, ensuring that the enhanced lightness 

L' is reflected in the final RGB image. 

2.7. Gamma Adjustment 

Gamma Adjustment or also known as Gamma Correction is a process used to optimize the tonal 

scale of an image by adjusting its brightness values. Mathematically, gamma correction can be expressed 

using the following power-law equation: 

   (   )     (   )  (6) 

where I( , ) is the original pixel intensity at position ( , ) (in the range [0, 1] for normalized pixel 

values or [0, 255] for 8-bit images), I'( , ) is the gamma-corrected pixel intensity, C is a constant used 

for normalization, typically set to 1 when dealing with normalized pixel values (e.g., when the pixel 

values are in the [0, 1] range), γ is the gamma value (typically between 0.8 and 2.2 for most displays). 

For RGB images, gamma correction can be applied to each color channel (R, G, B) individually using 

the same formula. 

3. MATERIALS AND METHOD 

The research workflow shown in Figure 1, the thermogram images of the soles of the feet 

obtained from the IEEE Dataport dataset, published by Hernandez-Contreras et al. [7]. 

 

Figure 1. Research workflow. 
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The dataset includes thermogram images and the corresponding Thermo Dataset, which contains 

detailed temperature measurements and patient information. The dataset consists of 122 diabetic patients 

and 45 non-diabetic patients. The thermogram images visualize the temperature distribution on the 

surface of the feet, providing valuable insights into patterns associated with diabetes-related 

complications. 

The tabular data in the Thermo Dataset as shown in Table 1 undergoes normalization using the 

Standard Scaler defined as follows: 

   
   

 
 (7) 

where, Z is the standardized value,   is the original data point, µ is the mean (average) of the dataset, and 

σ is the standard deviation of the dataset. This process standardizes the values, ensuring a mean of zero 

and a standard deviation of one. 

Table 1. Thermo dataset features. 

Features Description 

Subject 
Represents the unique identity of each subject in the dataset (DM001, DM002, CG001, etc.); 

this feature is used as a label. 

Gender The gender of each subject. 

General_Right The general temperature of the right sole. 

LCA_Right The temperature in the area of the Lateral Calcaneal Artery (outer heel) of the right foot. 

LPA_Right The temperature in the area of the Lateral Plantar Artery (outer sole) of the right foot. 

MCA_Right The temperature in the area of the Medial Calcaneal Artery (inner heel) of the right foot. 

MPA_Right The temperature in the area of the Medial Plantar Artery (inner sole) of the right foot. 

TCI_Right Thermal Change Index, the temperature change in the right foot over time. 

General_Left The general temperature of the left sole. 

Each thermogram image was resized to 64×149 pixels, matching the average dimensions of the 

dataset. We applied various image enhancement techniques: Posterize with 8, 64, and 512 colors; 

Solarize with thresholds of 64, 128, and 192; CLAHE with adjusted clip limits and tile grid sizes; and 

Gamma Adjustment with gamma values of –1.5, 1.25, 1.5, 1.75, 2, and 5. To standardize the input data 

and facilitate model convergence during training, pixel intensity values were normalized to the [0, 1] 

range by dividing by 255. 

Following preprocessing, the thermogram images and accompanying tabular data were 

randomly split into training and testing sets with an 80:20 ratio, ensuring even distribution for optimal 

model training and evaluation. 

We developed a custom multi-input classifier specifically designed for diabetic foot ulcer 

detection. The architecture components: 

1. Convolutional Neural Networks (CNNs): Two CNN sub-models process thermogram images of the 

left and right feet independently. Each CNN extracts spatial and temperature-related features from the 

respective thermogram images. 

2. Multi-Layer Perceptron (MLP): An MLP processes the normalized tabular data from the Thermo 

Dataset, extracting information from temperature measurements and other patient-related data. The 

MLP consists of fully connected layers with activation functions such as ReLU to model complex 

relationships in the tabular data. 

3. Concatenate Layer: The extracted features from the CNNs and the MLP are concatenated, followed 

by fully connected layers to generate the final prediction. 

The detailed architectures of the MLP, CNNs, and Fully Connecter layers are provided in Tables 

2, 3, and 4, respectively. To mitigate overfitting—where a model performs exceptionally well on training 

data but fails to generalize to unseen data—we incorporated L2 regularization and dropout in the fully 

connected layers. 
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Table 2. MLP architecture for tabular data. 

Layers Neuron Activation 

Dense 64 relu 

Dense 128 relu 

Dense 256 relu 

Dropout 0.5 - 

Table 3. CNNs architecture for plantar foot thermogram data. 

Layers 
Left foot Right foot 

Total filter Kernel/pool size Activation Total filter Kernel/pool size Activation 

Conv2D 64 (3, 3) relu 128 (3, 3) relu 

MaxPooling2D - (2, 2) - - (2, 2) - 

BatchNormalization - - - - - - 

Flatten - - - - - - 

In the fully connected layers depicted, L2 regularization and dropout are both employed to 

prevent overfitting, which is a common challenge in training machines learning models, particularly 

when the model learns to perform exceptionally well on training data but fails to generalize to new, 

unknown data. 

By integrating thermogram images and tabular data within a unified framework, our custom 

model leverages the complementary nature of visual and numerical information to enhance the early 

detection of diabetic foot ulceration. 

Table 4. Fully connected layer architecture. 

Layers Neuron/dropout size Regularizer Activation 

Concatenate - - - 

Dense 32 L2 relu 

Dropout 0.2 - - 

Dense 64 L2 relu 

Dropout 0.2 - - 

Dense 128 L2 relu 

Dropout 0.2 - - 

Dense 1 - sigmoid 

We compiled the model using the Adam optimizer with a learning rate of 1×10−4. Binary cross-

entropy loss was employed, aligning with the binary classification objective of diabetes detection. Model 

performance was monitored using the accuracy metric throughout the training process. 

Training was conducted with a batch size of 32 over 200 epochs for each image enhancing 

method, ensuring consistency and enabling a fair comparison of their respective impacts on model 

performance. Independent training for each enhancement technique provided a detailed analysis of its 

specific effect on the model. 

The evaluation model incorporated standard performance metrics—including accuracy, 

precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC)—along with 

an assessment of inference time. These metrics offered a comprehensive view of each model's 

effectiveness and the influence of different image enhancement techniques on performance, particularly 

in distinguishing diabetic patients from non-diabetic controls. 

By considering both performance metrics and inference time, we aimed to balance accuracy and 

efficiency, which is crucial for real-world applications. This approach ensures that the proposed models 

are not only theoretically robust but also practically applicable within the constraints of time-sensitive 

medical diagnostics. 
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4. RESULTS AND DISCUSSIONS 

In this study, we evaluated four image enhancement techniques—CLAHE, Gamma 

Adjustment, Posterization, and Solarization—applied to thermogram images of diabetic and non-

diabetic patients' soles. Each method was tested independently to enhance image clarity and improve 

the model's accuracy in early diabetic foot ulcer detection. 

4.1. Image Enhancement Results 

The application of different enhancement techniques led to notable variations in the 

thermogram images, influencing the model's ability to extract meaningful features. Each method 

uniquely alters the images' contrast, color distribution, and overall clarity. 

4.1.1. Posterization Results 

Figure 2 illustrates the effects of Posterization with three color levels: 8, 64, and 512 colors. 

This technique reduces the number of colors in the thermograms, simplifying temperature gradients 

and accentuating distinct thermal regions. 

 

Figure 2. Posterize result. 

Posterize 8 Colors significantly simplifies the thermograms, highlighting large thermal regions 

while eliminating finer details. Although it aids in identifying broad patterns, it may fail to capture 

subtle temperature differences critical for nuanced diagnoses, potentially diminishing diagnostic utility 

in complex cases. 

Posterize 64 Colors balance simplicity and detail, this configuration effectively detects 

intermediate thermal patterns. It maintains sufficient resolution to preserve key diagnostic features 

while reducing noise, providing a more balanced input for the model. 

Posterize 512 nearly as detailed as the original images. They capture subtle thermals variations 

and preserve the most fine details. However, the increased complexity may introduce noise and divert 

the model's focus from larger thermal patterns. 

Posterization offers flexibility in preprocessing by adjusting the level of detail to align with 

specific modeling needs. Higher simplicity benefits general pattern detection, while greater detail 

preserves diagnostic subtleties. 

4.1.2. Solarization Results 

Figure 3 presents the results of applying Solarization with thresholds of 64, 128, and 192. This 

technique inverts pixel intensities beyond a specific threshold, enhancing temperature contrasts. 
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Overall, Solarization provides a powerful means of enhancing temperature contrasts in 

thermograms, with each threshold level catering to different diagnostic priorities. While lower 

thresholds (e.g., 64) capture subtle variations, they risk introducing noise, whereas higher thresholds 

(e.g., 192) focus on broader patterns at the expense of finer details. 

 

Figure 3. Solarize results. 

4.1.3. CLAHE Results 

Figure 4 shows the results of CLAHE with various clip limits and tile grid sizes. Visually, 

these configurations appear similar in terms of enhanced contrast and structural preservation. 

 

 

Figure 4. CLAHE results. 
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To quantitatively assess and identify optimal parameters, we conducted Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index (SSIM) analyses, summarized in Table 5. 

PSNR is a widely used metric that quantifies the reconstruction quality of an image by 

comparing the original image to its enhanced version, with higher values indicating better image 

quality. The formula of PSNR is: 

             (
    

   
) (8) 

where MAX is the maximum possible pixel value of the image (e.g., 255 for 8-bit images), and MSE 

is the Mean Squared Error between the original and the compressed image. 

SSIM, on the other hand, focuses on assessing the perceptual quality by comparing the 

structural information of the images, where a higher SSIM value indicates greater similarity between 

the original and the enhanced image. The formula of SSIM is: 

     (   )  
(        )(       )

(  
    

    )(  
   

    )
 (9) 

where µ  and µy are the mean pixel values of images   and  , σx
2
 and σy

2
 are the variances of   and  , 

σxy is the covariance between   and  , C1 and C2 are constants to stabilize the division. 

The analysis revealed that several configurations produced identical PSNR and SSIM values. 

For example, a clip limit of 2 with tile grid sizes of 8×8, 16×16, and 6×12 yielded the same metrics as 

a clip limit of 1 with corresponding grid sizes. This uniformity suggests that training models on all 

these variations would be redundant. 

Table 5. PSNR and SSIM results. 

Image enhancement PSNR (dB) SSIM 

CLAHE (clip = 1, grid = 8×8) 17.69 0.7310 

CLAHE (clip = 1, grid = 16×16) 19.83 0.5989 

CLAHE (clip = 1, grid = 6×12) 19.38 0.7380 

CLAHE (clip = 2, grid = 8×8) 17.69 0.7310 

CLAHE (clip = 2, grid = 16×16) 19.83 0.5989 

CLAHE (clip = 2, grid = 6×12) 19.38 0.7380 

CLAHE (clip = 3, grid = 8×8) 19.10 0.6792 

CLAHE (clip = 3, grid = 16×16) 19.83 0.5989 

CLAHE (clip = 3, grid = 6×12) 19.38 0.7380 

To optimize computations, we narrowed down the configurations. We selected a clip limit of 2 

with a grid size of 8×8 as one optimal setup due to its balance of performance and efficiency. 

Additionally, we chose a clip limit of 3 with grid sizes of 8×8, 16×16, and 6×12, as they offered 

distinct PSNR and SSIM values compared to other clip limits. 

4.1.4. Gamma Adjusted Results 

Figure 5 illustrates the application of Gamma Adjustment with gamma values of – 1.5, 1.25, 

1.5, 1.75, 2, and 5. This technique manipulates pixel intensity, compressing or expanding the dynamic 

range to emphasize different aspects of thermal distribution. 

Gamma -1.5 generates images with extreme contrast and significant noise, as shown in Figure 

6. Thermal gradients appear inverted, and smooth temperature transitions are replaced with chaotic 

patterns. Despite reduced interpretability, the model performed unexpectedly well with gamma –1.5, 

possibly due to enhanced visibility of distinct temperature anomalies critical for classification. This 

suggests that extreme transformations may reveal subtle patterns impossible in standard images. 

Gamma 1.25 to 1.75 produces smoother transitions and emphasizes either lighter or darker 

regions, depending on the specific value. They increase broader temperature patterns, aiding in 

detecting general thermal anomalies. Gamma 1.5, in particular, balances enhancement and 

interpretability, preserving critical features while maintaining a natural look appearance. 
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Gamma 2 exhibit noticeably higher brightness levels, with warm regions becoming more 

pronounced and transitions appearing smoother. This adjustment increases the visibility of areas 

related to diabetic foot symptoms but may potentially obscure finer details in cooler regions, reducing 

the model's ability to detect subtle variations. 

 

Figure 5. Gamma adjustment results. 

At Gamma 5, images become exceedingly bright, and distinctions between thermal gradients 

diminish significantly. Lower-temperature regions are washed out, and the necessary contrast for 

identifying subtle anomalies is reduced. This may hinder the model's generalization due to the loss of 

critical image details. 
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Figure 6. Sample images on gamma -1.5. 

4.2. Modeling Results 

The application of various image enhancement techniques had distinct impacts on model 

performance, each presenting unique strengths and challenges as summarized in Table 6. The "Diff" 

column in the table represents the difference between the model's overall accuracy and its fold mean 

accuracy, providing insights into the consistency and generalization of each method. A smaller "Diff" 

value indicates better alignment between the overall accuracy and cross-validation results, suggesting 

robust generalization across different folds. 

Table 6. Results of modeling for all image enhancement. 

Image enhancement 
Evaluation metrics (%) Time (s) Fold mean 

accuracy (%) 
Diff 

Accuracy Precision Recall F1-score AUC Training Inference 
Original 88.24 100 86,21 92.59 97.24 76.64 0.2 83.23 5.01 

Posterize 8 94.12 93.55 100 96.67 100 61.65 0.14 80.80 13.32 

Posterize 64 91.18 93.33 96.55 94.92 97.93 66.56 0.15 83.78 7.4 

Posterize 512 88.24 100 86.21 92.59 97.24 78.38 0.18 85.03 3.21 

Solarize 64 88.24 100 86.21 92.59 97.93 66.12 0.15 86.26 1.98 

Solarize 128 97.06 100 96.55 98.25 100 68.59 0.17 89.27 7.79 

Solarize 192 97.06 96.67 100 98.31 99.31 64.42 0.15 85.1 11.96 

CLAHE (2, (8, 8)) 97.06 100 96.55 98.25 100 65.74 0.15 85.58 11.48 

CLAHE (3, (8, 8)) 91.18 100 89.66 94.55 97.24 66.57 0.15 85.04 6.14 

CLAHE (3, (16, 16)) 94.12 100 93.1 96.43 98.62 67.40 0.15 84.4 9.72 

CLAHE (3, (6, 12)) 100 100 100 100 100 66.08 0.18 83.78 16.22 

Gamma -1.5 94.12 96.55 96.55 96.55 99.31 66.55 0.15 88.65 5.47 

Gamma 1.5 91.18 96.43 93.1 94.74 97.93 70.24 0.2 83.28 7.9 

Gamma 1.25 91.18 96.43 93.1 94.74 97.93 66.56 0.15 83.85 7.33 

Gamma 1.75 94.12 96.55 96.55 96.55 97.93 66.47 0.15 82.09 12.03 

Gamma 2 88.24 96.3 89.66 92.86 97.93 65.83 0.14 86.22 2.02 

Gamma 5 94.12 96.55 96.55 96.55 99.31 66.94 0.14 87.49 6.63 
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4.2.1. Original Images 

Using the original, unenhanced thermogram images, the model achieved a stable performance 

with an accuracy of 88.24% and a precision of 100%. However, the fold mean accuracy was slightly 

lower at 83.23%, indicating moderate generalization. The unenhanced image quality retained all visual 

noise, which likely contributed to higher variance in model performance across folds. 

4.2.2. Posterization 

Applying the Posterize technique with 8 colors simplified the color palette and enhanced recall 

to 100% by considering distinct temperature regions. Nevertheless, the significant reduction in color 

detail hindered generalization, as evidenced by a fold mean accuracy of 80.80% and a high "Diff" 

value of 13.32%. Increasing the color levels to 64 struck a balance between simplicity and detail, 

resulting in a higher accuracy of 91.18% and improved consistency (fold mean accuracy of 83.78%). 

Using 512 colors produced results similar to the original images, with an accuracy of 88.24% and a 

fold mean of 85.03%, indicating that increasing colors beyond a certain threshold adds minimum value 

while maintaining consistent generalization. 

4.2.3. Solarization 

The Solarize technique at a threshold of 64 introduced high contrast but retained subtle details, 

achieving consistent performance with a fold mean accuracy of 86.26% and the lowest "Diff" value of 

1.98%. Solarize at threshold 128 yielded the best overall results, with accuracy, precision, and recall 

all at 97.06%, and the highest fold mean accuracy of 89.27%. This threshold optimally balances 

contrast enhancement and detail visibility. Conversely, Solarize at threshold 192 accentuated extreme 

contrasts, boosting the F1-score to 98.31% but increasing fold variation (fold mean accuracy of 

85.10% and "Diff" of 11.96%), indicating sensitivity to extreme values and reduced generalization. 

4.2.4. CLAHE 

Applying CLAHE with a clip limit of 2 and a tile grid size of 8×8 demonstrated consistency 

across metrics, achieving 97.06% accuracy and perfect scores in precision, recall, and AUC, with a 

stable fold mean accuracy of 85.58%. Increasing the clip limit to 3 with the same grid size resulted in 

slightly lower performance (91.18% accuracy) but maintained reliability. The configuration with a clip 

limit of 3 and a grid size of 6×12 achieved perfect scores across all metrics (100%) but struggled to 

generalize across folds, indicated by the highest "Diff" value of 16.22%. Using a grid size of 16×16 

with a clip limit of 3 balanced enhanced detail and generalization, achieving a fold mean accuracy of 

84.40%. 

4.2.5. Gamma Adjustment 

Gamma Adjustment at –1.5 delivered strong results with an accuracy of 94.12% and a fold 

mean accuracy of 88.65%, effectively highlighting low-temperature regions despite the extreme visual 

distortion. This suggests that emphasizing certain thermal anomalies can enhance classification 

performance. A gamma value of 1.5 provided a balanced approach, achieving consistent results with 

91.18% accuracy and a fold mean accuracy of 83.28%. For higher gamma values (2 and 5), images 

become overly bright, impacting performance. Gamma 2 showed moderate generalization (fold mean 

accuracy of 86.22%), while gamma 5 maintained strong recall and AUC but exhibited higher "Diff" 

values (6.63%), indicating less consistent generalization. 

4.2.6. Overall Findings 

The implementation of image enhancement techniques significantly improved model 

performance, as evidenced by the enhanced evaluation metrics. Enhanced images contributed to higher 

accuracy, precision, recall, and F1-score, and also demonstrated faster training and inference times 

compared to using the original, unenhanced data. These results highlight the dual benefits of image 

enhancement in boosting both the effectiveness of the model and computational efficiency. 

Among the enhancement methods evaluated, Solarize at threshold 128 emerged as the most 

effective, balancing high performance with strong generalization. CLAHE and Gamma Adjustment 

also demonstrated considerable potential, offering unique advantages depending on specific task 

requirements. This analysis underscores the importance of balancing enhancement intensity with fold 
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consistency to achieve optimal results. Selecting appropriate enhancement parameters is crucial, as it 

directly influences the model's ability to generalize and accurately classify diabetic conditions. Future 

work may explore combining these enhancement techniques to capitalize on their complementary 

strengths, potentially leading to further improvements in diagnostic accuracy. 

Figure 7 illustrates the training history plots for models using the Solarize enhancement 

technique at thresholds of 64, 128, and 192 over 200 epochs. 

 

 

Figure 7. History plot of solarize. 

The training history plots show that the Solarize threshold of 192 offers the most balanced 

performance, combining high accuracy, stable loss metrics, and minimal fluctuations. This indicates 

that threshold 192 effectively enhances thermogram images by optimally inverting pixel intensities to 

highlight critical temperature contrasts without adding excessive noise or obscuring important details. 

Models trained with this threshold generalize well to validate data, maintaining consistent 

performance across epochs. 

In contrast, the lower threshold of 64, while quickly achieving high accuracy, exhibits greater 

volatility in both accuracy and loss—possibly due to overemphasis on minor temperature variations 

and increased noise sensitivity. The threshold of 128 provides stable training loss metrics but shows 

fluctuations in validation loss. 

4.3. Modeling on Bias Sets 

An additional evaluation was conducted using a bias-prone subset of data. This biased dataset 

included thermograms lacking distinct CG or DM characteristics, thermograms that visually exhibited 

CG traits but specific to DM cases, and thermograms with asymmetrical patterns between the right and 

left feet. Selection of these biased samples was based on the author's judgment, guided by medical 

literature [7], [21-25]. The subset consisted of 33 biased samples used as test data, while the remaining 

134 samples were used for training. The model was trained using Solarize, identified earlier as the 

most effective image enhancement technique. This setup allowed us to analyze the model's ability to 

handle complex and ambiguous thermographic patterns while leveraging the performance 

improvements provided by Solarize. 

Table 7 is the results from the bias dataset offering critical insights into the model's 

performance under challenging conditions. Using Solarize 64, the model achieved the highest 

accuracy at 69.7% with an F1-score of 79.17%. Although recall was relatively low at 65.52%, 

precision reached an ideal 100%. This indicates the model was highly selective and confident in its 

positive predictions but struggled to generalize across the entire test set. The imbalance suggests that 
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the biased dataset, with thermograms showing ambiguous or conflicting features, presented patterns 

that differed significantly from the training data, limiting the model's adaptability. 

Table 7. Results of modeling for all image enhancement. 

Image enhancement 
Evaluation metrics (%) Time (s) 

Accuracy Precision Recall F1-score AUC Training Inference 

Solarize 64 69.7 100 65.52 79.17 67.24 65.04 0.004 

Solarize 128 48.48 100 41.38 58.54 52.59 65.89 0.004 

Solarize 192 45.45 92.31 41.38 57.14 70.69 65.72 0.005 

In contrast, Solarize 128 and 192 showed even lower accuracies of 48.48% and 45.45%, 

respectively. The sharp drop in F1-score and recall for Solarize 128, along with its AUC of only 

52.59%, highlighting the model's inability to effectively distinguish between CG and DM in scenarios 

with extreme or conflicting patterns. Solarize 192, despite a slightly higher AUC of 70.69%, also 

suffered from poor generalization, reflected in its low recall of 41.38%. These findings emphasize the 

trade-off with Solarize thresholds: while Solarize 64 effectively captures broader temperature 

contrasts, higher thresholds like 128 and 192 may introduce distortions that obscure critical features in 

highly biased data. 

 

Figure 8. Confusion Matrices for bias sets. 

An intriguing observation is the significantly lower inference time across all Solarize 

thresholds for the bias dataset, averaging around 0.004 – 0.005 seconds. This sharp reduction 

compared to the standard dataset suggests the model processes the bias data more quickly due to 

reduced complexity or variability in the patterns encountered. However, this efficiency comes at the 

cost of performance, as the lower inference time correlates with declines in recall and overall 
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accuracy. This trade-off raises concerns about the model's robustness and highlights the need for 

further refinement, especially in handling edge cases that deviate from the training distribution. 

Despite the low accuracy, the model exhibits exceptionally high precision across all Solarize 

thresholds, particularly with Solarize 64 and 128, where precision reaches 100%. This occurs because 

the model makes virtually no false positive predictions for the positive class (DM). As shown in 

Figure 9, the false positive count is zero for both Solarize 64 and 128, indicating that every positive 

prediction aligns with the ground truth labels. 

Despite the low accuracy across all Solarize thresholds, the model exhibits exceptionally high 

precision, particularly with Solarize 64 and Solarize 128, where precision reaches a perfect 100%. This 

phenomenon arises because the model makes virtually no false positive predictions for the positive 

class (DM). As reflected Fig. 9, the false positive (FP) count is zero for both Solarize 64 and Solarize 

128. This indicates that every positive prediction made by the model is indeed correct according to the 

ground truth labels. 

However, the low recall scores reveal a significant limitation in the model's capabilities to 

capture all positive cases. For example, under Solarize 64, of the 29 instances that truly belong to the 

DM class, the model only identifies 19, leaving 10 cases undetected. This demonstrates a strong bias 

toward precision over sensitivity, which can be particularly problematic in medical diagnostics where 

missing true positives (false negatives) can have severe consequences. 

5. CONCLUSION 

This research evaluated various image enhancement techniques to improve early diabetic foot 

ulcer detection using thermogram images. We used a comprehensive dataset from IEEE Dataport by 

Hernandez-Contreras et al. [7], which included thermograms from 122 diabetic and 45 non-diabetic 

patients, along with detailed foot temperature data. Rigorous preprocessing ensured data consistency, 

including normalization using the Standard Scaler for tabular data and pixel normalization for images. 

We regularly applied four image enhancement methods: CLAHE, Posterize, Solarize, and 

Gamma Adjustment. These techniques aim to enhance temperature distribution patterns critical for 

early ulcer detection. The model, which integrated submodules for both image and tabular data, was 

trained using an 80:20 split for training and testing. Performance was assessed using metrics such as 

accuracy, precision, recall, F1-score, and ROC-AUC. 

Among the techniques, Solarize at a threshold of 128 was most effective. It achieved 97.06% 

accuracy at 200 epochs, with a mean fold accuracy of 89.27% and a manageable error of 7.79%, 

showing strong generalization. Solarize also resisted overfitting, outperforming other methods like 

CLAHE, which, despite high precision in some setups, showed overfitting and inconsistent folds. 

Posterize and Gamma Adjustment showed potential but were less consistent. Notably, Gamma -1.5 

offered surprising generalization despite its extreme visual transformations. 

We also tested the model on a highly biased data subset with ambiguous thermograms, 

selected based on medical literature. While accuracy dropped (e.g., 69.7% for Solarize 64), the model 

achieved near-perfect precision, avoiding false positives even in challenging cases. This underscores 

the need for optimization when handling complex, biased datasets. 

Future work could combine Solarize with other enhancements such as CLAHE or Gamma 

Adjustment to further improve feature visibility and model performance. Adopting advanced 

architectures such as Kolmogorov-Arnold Networks or Vision Transformers might capture subtle 

temperature variations more effectively. Additionally, expanding the dataset with patient-specific 

metrics—such as blood glucose levels, age, BMI, and diabetes duration—could increase accuracy and 

clinical relevance. These steps aim to develop a more robust, precise, and clinically useful diagnostic 

system for detecting diabetic foot ulcers. 
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