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ABSTRACT  ARTICLE INFO 

Solitons are nonlinear waves that exhibit persistent propagation in the 
anomalous dispersion regime. In this article, we demonstrate the 
generation of soliton pulse in photonic crystal waveguide and nanowire 
at nonlinear length 6 mm in several photonic crystal waveguides and 
nanowire including fiberglass, silicon, silica, hollow photonic crystal, 
and tellurite glass. Optical soliton pulse compression 0.5 ps with 
increasing order observed in this model. This study reveals the 
propagation of soliton is feasible at high order mode in silicon nanowire 
and tellurite glass as compared with normal fiber and photonic crystals. 
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1. INTRODUCTION 

Dispersion management in the optical-fiber network created the great potential to be 

optimized for long-haul transmission. Optical soliton is pulse propagating in a negative velocity 

dispersion region which is a table for long-distance with high-bit-rate optical transmission systems in 

the time domain [1-3]. 

Soliton propagation has become quite intertest in the nonlinear wave where it demonstrated 

soliton wave transmitted spectrally in a photonic waveguide such as silicon waveguide in femtosecond 

input pulse [4-8]. The quest to demonstrate soliton dynamics is challenging due to nonlinear 

interaction and compatibility of the light source [9-11], pulse duration [12], and energy limited [13]. 

Here, we demonstrate a soliton pulse model generated in different mediums including photonic 

crystal, hollow photonic crystal, silica nanowire, silicon nanowire, and tellurite crystal glass fiber. 

2. RESEARCH METHODS 

In this section, a self-consistent formulation for the temporal soliton model is briefly 

discussed. Transmission of soliton in optical fiber is described in dimensionless form according to 

perturbed nonlinear Schrodinger equation: 
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where given dispersion length     
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thus, the solution of soliton profiles,  (   ) describes the pulse envelope in time   at the spatial 

position  , in which    refers to group velocity dispersion coefficient in ps
2
/m,   refer to chirping 

parameter, and   refer to nonlinear Kerr parameter. 

The evolution of a field in nonlinear for soliton propagation is solved by using a numerical 

spit-step algorithm where the interval is created in the midpoint between two neighboring basic cells. 

The split-step method has been selected since it is one of a reliable algorithm for an ultra-fast pulse in 

communication for up to a rate of Tb/s [14]. In this model, a half segment of the linear portion is 

created and the other half created for the nonlinear portion. Thus, as a pulse wave generated between 

cells, it superimposed between half segments of the cell’s edge. 

3. RESULTS AND DISCUSSIONS 

The large magnitude of Kerr coefficient in photonic crystals [15] and as compared with fused 

silica has enabled transmission in normal and anomalous dispersion regime, pulse reshaping [16] 

phase modification [17], and compression phenomena [18]. This led to novel soliton interaction given 

in different media applied. Photonics crystal such as hollow crystal fiber also allowing low-loss 

transmission and effective guiding promote nonlinear medium for wave propagation [19, 20].  Table 1 

shows several types of fiber, nanowire, and photonic crystals and their related dispersion coefficient 

properties used for this model. 

Table 1. several types of fibers, nanowires, and photonic crystals and material properties. 

Type of optical fiber/NW 
Material’s properties 

References 
   (ps2/m)      (W/m) 

Fused silica 0.022 0.0011 [21] 

Hollow photonic crystal fiber 0.0183 0.000002 [22] 

Tellurite crystal fiber 0.185 5.70 [23] 

Silica nanowire 0.009 0.22 [24] 

Silicon nanowire 2.26 300 [25] 

Figure 1 shows the result of soliton generated in the different medium at different soliton 

order. As depicted in Figure 1 (a), soliton generated in fused-silica fiber experienced increased two-

fold of power with increasing soliton order from N = 1 to N = 3. Pulse compression behavior is seen as 

soliton order increased. Also, the chirping effect becoming prominent with increasing soliton’s order 

[26]. 

The result shows the single pulse soliton’s profile is easily generated by applying for the first 

soliton’s order, N = 1 in photonics hollow crystal fiber, tellurite, and silica nanowire as depicted In 

Figure 1 (b), (c), and (d). Meanwhile, a single pulse profile is generated within second-order soliton, N 

= 2 for tellurite crystal fiber, and silicon nanowire. Both mediums also showing the behavior of pulse 

compression with increasing soliton order until N = 3. However, silicon nanowire in Figure 1 (e) 

showing stable pulse generation without chirping effect as soliton’s order get higher which showing 

increasing of self-phase modulation effect [27]. 

Ideal soliton propagation is observed for generation at first order in silica nanowire as depicted 

in Figure 1 (d). Increasing the soliton’s order led to larger attenuation and carrier dispersion. As result, 

the pulse power getting lowered with further increasing soliton’s order. 
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Figure 1.  Temporal soliton generated in different optical medium with variant soliton order,N = 1 – 3 (dashed 

line represent input and red line represent output spectrum): (a) fused silica; (b) hollow-core photonic crystal; (c) 

tellurite crystal fiber; (d) silica nanowire; and (e) silicon nanowire. Insert showing typical fiber/NW. 

4. CONCLUSION 

This study reports the realization of soliton generation within different media of optical fiber 

including capillary- type, hollow-type, and nanowire. Soliton pulse is exhibited by generation in the 

anomalous dispersion regime. Silica nanowire easily generates soliton at first order, meanwhile, 

tellurite glass and silicon nanowire form soliton pulse within second order of generation. Pulse 

compression phenomena are observed with increasing soliton’s order where stable pulse generation of 

soliton is supported by the self-phase modulation effect. The numerical result showing the stability of 

pulse compression within higher soliton’s order for generation in tellurite crystal fiber and silicon 

nanowire. The soliton pulse dynamics in temporal evolution could potentially be implemented in 

future picosecond integrated photonics and chips applications. 
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